Refine
Document Type
- Article (24)
Language
- English (24)
Has Fulltext
- yes (24)
Is part of the Bibliography
- no (24)
Keywords
- - (7)
- cardiopulmonary exercise testing (3)
- cardiorespiratory fitness (3)
- AHI (2)
- Alzheimer’s disease (2)
- all-cause mortality (2)
- cardiac output (2)
- chronic thromboembolic pulmonary hypertension (2)
- comorbidities (2)
- lung function (2)
Institute
Publisher
- MDPI (8)
- Wiley (6)
- Nature Publishing Group (3)
- SAGE Publications (2)
- Springer Nature (2)
- BioMed Central (BMC) (1)
- Frontiers Media S.A. (1)
- S. Karger AG (1)
Riociguat is one of several approved therapies available for patients with pulmonary arterial hypertension (PAH). Treatment should be initiated and monitored at an expert center by a physician experienced in treating PAH, and the dose adjusted in the absence of signs and symptoms of hypotension. In certain populations, including patients with hepatic or renal impairment, the elderly, and smokers, riociguat exposure may differ, and dose adjustments should therefore be made with caution according to the established scheme. Common adverse events are often easily managed, particularly if they are discussed before starting therapy. Combination therapy with riociguat and other PAH-targeted agents is feasible and generally well tolerated, although the coadministration of phosphodiesterase type 5 inhibitors (PDE5i) and riociguat is contraindicated. An open-label, randomized study is currently ongoing to assess whether patients who do not achieve treatment goals while receiving PDE5i may benefit from switching to riociguat. In this review, we provide a clinical view on the practical management of patients with PAH receiving riociguat, with a focus on the opinions and personal experience of the authors.
The reviews of this paper are available via the supplemental material section.
Background: Despite optimized medical therapy, severe idiopathic pulmonary arterial hypertension (IPAH) is a devastating disease with a poor outcome. Autoantibodies have been detected in IPAH that can contribute to worsening of the disease. Objectives: The objective of this prospective, open-label, single-arm, multicenter trial was to evaluate the safety and efficacy of immunoadsorption (IA) as an add-on to optimized medical treatment for patients with IPAH. Methods: A total of 10 IPAH patients received IA over 5 days. Their clinical parameters, including hemodynamics measured by right heart catheter, were assessed at baseline and after 3 and 6 months. The primary endpoint was the change in pulmonary vascular resistance (PVR). Secondary endpoints included the change in 6-min walking distance, quality of life, safety, and plasma levels of IgG and autoantibodies. Results: The evaluation of the 10 IPAH patients (75% female; 51 ± 12 years; 166 ± 10 cm; WHO functional class III; 53% on combination therapy) revealed that IA was a safe procedure that efficiently removed IgG and autoantibodies from the circulation. After 3 months, the mean PVR improved significantly by 13.2% (p = 0.03) and the cardiac index improved by 13.1%, but no significant changes were found in 6-min walking distance. The quality of life physical functioning subscale score significantly improved after 6 months. The serious adverse events in 3 patients were possibly related to IA and included pneumonia, temporary disturbance in attention, and thrombocytopenia. Conclusions: IA as an add-on to targeted medical treatment for IPAH is a safe procedure with beneficial effects on hemodynamics, especially in patients with high levels of autoantibodies. Larger-scale controlled studies are needed to assess its efficacy in IPAH and to identify responders.
Background: Interstitial lung disease (ILD) is associated with high rates of comorbidities and non-infectious lung disease mortality. Against this background, we aimed to evaluate the prognostic capacity of lung function and cardiopulmonary exercise testing (CPET) in patients with ILD. Materials and Methods: A total of 183 patients with diverse ILD entities were included in this monocentric analysis. Prediction models were determined using Cox regression models with age, sex, body mass index (BMI), and all parameters from pulmonary function testing and CPET. Kaplan–Meier curves were plotted for selected variables. Results: The median follow-up period was 3.0 ± 2.5 years. Arterial hypertension (57%) and pulmonary hypertension (38%) were the leading comorbidities. The Charlson comorbidity index score was 2 ± 2 points. The 3-year and 5-year survival rates were 68% and 50%, respectively. VO2peak (mL/kg/min or %pred.) was identified as a significant prognostic parameter in patients with ILD. The cut-off value for discriminating mortality was 61%. Conclusion: The present analyses consistently revealed the high prognostic power of VO2peak %pred. and other parameters evaluating breathing efficacy (VÉ/VCO2 @AT und VÉ/VCO2 slope) in ILD patients. VO2peak %pred., in contrast to the established prognostic values FVC %pred., DLCO/KCO %pred., and GAP, showed an even higher prognostic ability in all statistical models.
Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare disease which is often
caused by recurrent emboli. These are also frequently found in patients with myeloproliferative
diseases. While myeloproliferative diseases can be caused by gene defects, the genetic predisposition
to CTEPH is largely unexplored. Therefore, the objective of this study was to analyse these genes
and further genes involved in pulmonary hypertension in CTEPH patients. A systematic screening
was conducted for pathogenic variants using a gene panel based on next generation sequencing.
CTEPH was diagnosed according to current guidelines. In this study, out of 40 CTEPH patients
4 (10%) carried pathogenic variants. One patient had a nonsense variant (c.2071A>T p.Lys691*)
in the BMPR2 gene and three further patients carried the same pathogenic variant (missense variant,
c.1849G>T p.Val617Phe) in the Janus kinase 2 (JAK2) gene. The latter led to a myeloproliferative
disease in each patient. The prevalence of this JAK2 variant was significantly higher than expected
(p < 0.0001). CTEPH patients may have a genetic predisposition more often than previously thought.
The predisposition for myeloproliferative diseases could be an additional risk factor for CTEPH
development. Thus, clinical screening for myeloproliferative diseases and genetic testing may be
considered also for CTEPH patients.
Background: Invasive cardiopulmonary exercise testing (iCPET) is an integral part in the advanced diagnostic workup of pulmonary hypertension (PH). Our study evaluated the relation between hemodynamic and respiratory parameters at two different resting conditions and two defined low exercise levels with a close synchronization of measurements in a broad variety of dyspnea patients. Subjects and methods: We included 146 patients (median age 69 years, range 22 to 85 years, n = 72 female) with dyspnea of uncertain origin. Invasive hemodynamic and gas exchange parameters were measured at rest, 45° upright position, unloaded cycling, 25 and 50 W exercise. All measurements were performed in a single RHC procedure. Results: Oxygen uptake (VO2/body mass) correlated significantly with cardiac index (all p ≤ 0.002) at every resting and exercise level and with every method of cardiac output measurement (thermodilution, method of Fick). Mean pulmonary arterial pressure (PAPmean) correlated with all respiratory parameters (respiratory rate, partial end-tidal pressures of oxygen and carbon dioxide [petCO2 and petO2], ventilation/carbon dioxide resp. oxygen ratio [VE/VCO2, VE/VO2], and minute ventilation [VE], all p < 0.05). These correlations improved with increasing exercise levels from rest via unloaded cycling to 25 W. There was no correlation with right atrial or pulmonary arterial wedge pressure. Summary: In dyspnea patients of different etiologies, the cardiac index is closely linked to VO2 at every level of rest and submaximal exercise. PAPmean is the only pressure that correlates with different respiratory parameters, but this correlation is highly significant and stable at rest, unloaded cycling and at 25 W.
Background: Following acute pulmonary embolism (PE), a relevant number of patients experience decreased exercise capacity which can be associated with disturbed pulmonary perfusion. Cardiopulmonary exercise testing (CPET) shows several patterns typical for disturbed pulmonary perfusion. Research question: We aimed to examine whether CPET can also provide prognostic information in chronic thromboembolic pulmonary hypertension (CTEPH). Study Design and Methods: We performed a multicenter retrospective chart review in Germany between 2002 and 2020. Patients with CTEPH were included if they had ≥6 months of follow-up and complete CPET and hemodynamic data. Symptom-limited CPET was performed using a cycle ergometer (ramp or Jones protocol). The association of anthropometric data, comorbidities, symptoms, lung function, and echocardiographic, hemodynamic, and CPET parameters with survival was examined. Mortality prediction models were calculated by Cox regression with backward selection. Results: 345 patients (1532 person-years) were included; 138 underwent surgical treatment (pulmonary endarterectomy or balloon pulmonary angioplasty) and 207 received only non-surgical treatment. During follow-up (median 3.5 years), 78 patients died. The death rate per 1000 person-years was 24.9 and 74.2 in the surgical and non-surgical groups, respectively (p < 0.001). In age- and sex-adjusted Cox regression analyses, CPET parameters including peak oxygen uptake (VO2peak, reflecting cardiopulmonary exercise capacity) were prognostic in the non-surgical group but not in the surgical group. In mortality prediction models, age, sex, VO2peak (% predicted), and carbon monoxide transfer coefficient (% predicted) showed significant prognostic relevance in both the overall cohort and the non-surgical group. In the non-surgical group, Kaplan–Meier analysis showed that patients with VO2peak below 53.4% predicted (threshold identified by receiver operating characteristic analysis) had increased mortality (p = 0.007). Interpretation: The additional measurement of cardiopulmonary exercise capacity by CPET allows a more precise prognostic evaluation in patients with CTEPH. CPET might therefore be helpful for risk-adapted treatment of CTEPH.
Introduction
Heart rate variability (HRV), defined as the variability of consecutive heart beats, is an important biomarker for dysregulations of the autonomic nervous system (ANS) and is associated with the development, course, and outcome of a variety of mental and physical health problems. While guidelines recommend using 5 min electrocardiograms (ECG), recent studies showed that 10 s might be sufficient for deriving vagal-mediated HRV. However, the validity and applicability of this approach for risk prediction in epidemiological studies is currently unclear to be used.
Methods
This study evaluates vagal-mediated HRV with ultra-short HRV (usHRV) based on 10 s multichannel ECG recordings of N = 4,245 and N = 2,392 participants of the Study of Health in Pomerania (SHIP) from two waves of the SHIP-TREND cohort, additionally divided into a healthy and health-impaired subgroup. Association of usHRV with HRV derived from long-term ECG recordings (polysomnography: 5 min before falling asleep [N = 1,041]; orthostatic testing: 5 min of rest before probing an orthostatic reaction [N = 1,676]) and their validity with respect to demographic variables and depressive symptoms were investigated.
Results
High correlations (r = .52–.75) were revealed between usHRV and HRV. While controlling for covariates, usHRV was the strongest predictor for HRV. Furthermore, the associations of usHRV and HRV with age, sex, obesity, and depressive symptoms were similar.
Conclusion
This study provides evidence that usHRV derived from 10 s ECG might function as a proxy of vagal-mediated HRV with similar characteristics. This allows the investigation of ANS dysregulation with ECGs that are routinely performed in epidemiological studies to identify protective and risk factors for various mental and physical health problems.
Objective: Menopause is associated with multiple health risks. In several studies, a higher incidence or a higher risk for obstructive sleep apnea (OSA) in post-menopausal than pre-menopausal women is reported. This study was designed to verify such a connection between menopause and OSA in a population-based sample.
Methods: For a subsample (N = 1209) of the Study of Health in Pomerania (N = 4420), complete polysomnography data was available. Of these, 559 females completed a structured interview about their menstrual cycle. Splines and ordinal regression analysis were used to analyze the resulting data.
Results: In the ordinal regression analysis, a significant association between the apnea–hypopnea index (AHI) and menopause indicated that post-menopausal women had a substantially higher risk of OSA. In accordance with previous studies, risk indicators such as body mass index (BMI), age, and the influence of hysterectomies or total oophorectomies were included in the model.
Conclusions: Our results clearly confirmed the assumed connection between menopause and OSA. This is important because OSA is most often associated with male patients, and it warrants further research into the underlying mechanisms.
The establishment of a guideline for long-term noninvasive ventilation treatment (LTH-NIV) of acute hypercapnic exacerbations of chronic obstructive pulmonary disease (AECOPD) requiring acute ventilation has proven elusive. Most studies thus far have shown no mortality benefit of long-term noninvasive ventilation treatment. Using retrospective analysis of the data of our patients (n = 143) recruited from 2012 to 2019, we aimed to compare patients discharged with and without long-term noninvasive ventilation. The follow-up results showed no significant difference (p = 0.233) between the groups [LTH-NIV (n = 83); non-NIV (n = 60)] regarding readmission due to clinical worsening. However, the first- and second-year survival rates were 82% and 72%, respectively, in the LTH-NIV group and significantly different (p = 0.023) from 67 and 55% in the non-NIV group. The statistical models showed a significant mortality risk for the non-NIV group, with a hazard ratio (HR) of 2.82 (1.31; 6.03). To the best of our knowledge, this is the first study to demonstrate the mortality benefit of long-term NIV therapy for patients with AECOPD under real-world conditions.