Refine
Document Type
- Article (10)
Language
- English (10)
Has Fulltext
- yes (10)
Is part of the Bibliography
- no (10)
Keywords
- - (4)
- RNA (3)
- aptamer (2)
- boronate linkage (2)
- split structure (2)
- <i>Staphylococcus aureus</i> (1)
- Azides (1)
- Click chemistry (1)
- DNA (1)
- DNAzyme (1)
Institute
Solid Phase Assembly of Fully Protected Trinucleotide Building Blocks for Codon-Based Gene Synthesis
(2019)
Azide‐Modified Nucleosides as Versatile Tools for Bioorthogonal Labeling and Functionalization
(2022)
Abstract
Azide‐modified nucleosides are important building blocks for RNA and DNA functionalization by click chemistry based on azide‐alkyne cycloaddition. This has put demand on synthetic chemistry to develop approaches for the preparation of azide‐modified nucleoside derivatives. We review here the available methods for the synthesis of various nucleosides decorated with azido groups at the sugar residue or nucleobase, their incorporation into oligonucleotides and cellular RNAs, and their application in azide‐alkyne cycloadditions for labelling and functionalization.
Abstract
In the RNA world, the exchange of sequence patches between two RNAs is an intriguing evolutionary concept, allowing generation of new RNA molecules with novel functionality. Based on the hairpin ribozyme (HPR) with its unique cleavage‐ligation properties, we here demonstrate RNA supported RNA recombination as a possible scenario for the emergence of larger RNA molecules with more complex functionality. A HPR variant designed for the purpose of recombination is capable of cleaving two different RNA molecules, one being a hammerhead ribozyme (HHR) and the other an aptamer (A), and to subsequently recombine and ligate the resulting fragments to a hammerhead ribozyme that is allosterically controlled (HHA) by a cognate ligand. Two such recombination processes involving aptamers for either theophylline or flavine mononucleotide (FMN) are demonstrated with yields of functional recombination product of up to 34 %.
Abstract
The 10–23 DNAzyme is an artificially developed Mg2+‐dependent catalytic oligonucleotide that can cleave an RNA substrate in a sequence‐specific fashion. In this study, new split 10–23 DNAzymes made of two nonfunctional fragments, one of which carries a boronic acid group at its 5′ end, while the other has a ribonucleotide at its 3′ end, were designed. Herein it is demonstrated that the addition of Mg2+ ions leads to assembly of the fragments, which in turn induces the formation of a new boronate internucleoside linkage that restores the DNAzyme activity. A systematic evaluation identified the best‐performing system. The results highlight key features for efficient control of DNAzyme activity through the formation of boronate linkages.
Boronate esters, formed by the reaction of an oligonucleotide bearing a 5′-boronic acid moiety with the 3′-terminal cis-diol of another oligonucleotide, support the assembly of functional nucleic acid architectures. Reversible formation of boronate esters occurs in templated fashion and has been shown to restore the activity of split DNA and RNA enzymes as well as a split fluorescent light-up aptamer. Apart from their suitability for the design and application of split nucleic acid enzymes and aptamers in the field of biosensing, boronate esters may have played an important role in early life as surrogates of the natural phosphodiester bond. Their formation is reversible and thus fulfills an important requirement for biological self-assembly. Here we discuss the general concept of stimuli-dependent boronate formation and its application in biomolecules with implications for future research.
Boronate esters formed by reaction of an oligonucleotide carrying a 5′-boronic acid moiety with the 3′-terminal cis-diol of another have been shown previously to assist assembly of fragmented DNAzymes. Here we demonstrate that boronate esters replacing the natural phosphodiester linkage at selected sites of two functional RNAs, the hairpin ribozyme and the Mango aptamer, allow assembly of functional structures. The hairpin ribozyme, a small naturally occurring RNA that supports the reversible cleavage of appropriate RNA substrates, is very sensitive to fragmentation. Splitting the ribozyme at four different sites led to a significant decrease or even loss of cleavage and ligation activity. Ribozymes assembled from fragments capable of boronate ester formation showed restoration of cleavage activity in some but not all cases, dependent on the split site. Ligation proved to be more challenging, no supportive effect of the boronate ester was observed. Split variants of the Mango aptamer also showed a dramatic loss of functionality, which however, was restored when 5′-boronic acid modified fragments were used for assembly. These studies show for the first time that boronate esters as internucleoside linkages can act as surrogates of natural phosphodiesters in functional RNA molecules.
The vast majority of RNA splicing in today‘s organisms is achieved by the highly regulated and precise removal of introns from pre-mRNAs via the spliceosome. Here we present a model of how RNA splicing may have occurred in earlier life forms. We have designed a hairpin ribozyme derived spliceozyme that mediates two RNA cleavages and one ligation event at specific positions and thus cuts a segment (intron) out of a parent RNA and ligates the remaining fragments (exons). The cut-out intron then performs a downstream function, acting as a positive regulator of the activity of a bipartite DNAzyme. This simple scenario shows how small RNAs can perform complex RNA processing dynamics, involving the generation of new phenotypes by restructuring segments of given RNA species, as well as delivering small RNAs that may play a functional role in downstream processes.
Interaction of Staphylococcus aureus alpha-toxin (hemolysin A, Hla) with eukaryotic cell membranes is mediated by proteinaceous receptors and certain lipid domains in host cell plasma membranes. Hla is secreted as a 33 kDa monomer that forms heptameric transmembrane pores whose action compromises maintenance of cell shape and epithelial tightness. It is not exactly known whether certain membrane lipid domains of host cells facilitate adhesion of Ha monomers, oligomerization, or pore formation. We used sphingomyelinase (hemolysin B, Hlb) expressed by some strains of staphylococci to pre-treat airway epithelial model cells in order to specifically decrease the sphingomyelin (SM) abundance in their plasma membranes. Such a pre-incubation exclusively removed SM from the plasma membrane lipid fraction. It abrogated the formation of heptamers and prevented the formation of functional transmembrane pores. Hla exposure of rHlb pre-treated cells did not result in increases in [Ca2+]i, did not induce any microscopically visible changes in cell shape or formation of paracellular gaps, and did not induce hypo-phosphorylation of the actin depolymerizing factor cofilin as usual. Removal of sphingomyelin from the plasma membranes of human airway epithelial cells completely abrogates the deleterious actions of Staphylococcus aureus alpha-toxin.