Refine
Document Type
- Article (6)
Language
- English (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
- airway epithelial cells (3)
- alpha-toxin (3)
- - (2)
- <i>Staphylococcus aureus</i> (2)
- cell cycle (1)
- cell physiology (1)
- cellular sensitivity (1)
- cyanotoxin (1)
- cylindrospermopsin (1)
- cytokinesis (1)
Institute
Publisher
- MDPI (5)
- Public Library of Science (PLoS) (1)
The pore forming alpha-toxin (hemolysin A, Hla) of Staphylococcus aureus (S. aureus) is a major virulence factor with relevance for the pathogenicity of this bacterium, which is involved in many cases of pneumonia and sepsis in humans. Until now, the presence of Hla in the body fluids of potentially infected humans could only be shown indirectly, e.g., by the presence of antibodies against Hla in serum samples or by hemolysis testing on blood agar plates of bacterial culture supernatants of the clinical isolates. In addition, nothing was known about the concentrations of Hla actually reached in the body fluids of the infected hosts. Western blot analyses on 36 samples of deep tracheal aspirates (DTA) isolated from 22 hospitalized sepsis patients using primary antibodies against different epitopes of the Hla molecule resulted in the identification of six samples from five patients containing monomeric Hla (approx. 33 kDa). Two of these samples showed also signals at the molecular mass of heptameric Hla (232 kDa). Semiquantitative analyses of the samples revealed that the concentrations of monomeric Hla ranged from 16 to 3200 ng/mL. This is, to our knowledge, the first study directly showing the presence of S. aureus Hla in samples of airway surface liquid in human patients.
Target Mechanisms of the Cyanotoxin Cylindrospermopsin in Immortalized Human Airway Epithelial Cells
(2022)
Cylindrospermopsin (CYN) is a cyanobacterial toxin that occurs in aquatic environments worldwide. It is known for its delayed effects in animals and humans such as inhibition of protein synthesis or genotoxicity. The molecular targets and the cell physiological mechanisms of CYN, however, are not well studied. As inhalation of CYN-containing aerosols has been identified as a relevant route of CYN uptake, we analyzed the effects of CYN on protein expression in cultures of immortalized human bronchial epithelial cells (16HBE14o−) using a proteomic approach. Proteins whose expression levels were affected by CYN belonged to several functional clusters, mainly regulation of protein stability, cellular adhesion and integration in the extracellular matrix, cell proliferation, cell cycle regulation, and completion of cytokinesis. With a few exceptions of upregulated proteins (e.g., ITI inhibitor of serine endopeptidases and mRNA stabilizer PABPC1), CYN mediated the downregulation of many proteins. Among these, centrosomal protein 55 (CEP55) and osteonectin (SPARC) were significantly reduced in their abundance. Results of the detailed semi-quantitative Western blot analyses of SPARC, claudin-6, and CEP55 supported the findings from the proteomic study that epithelial cell adhesion, attenuation of cell proliferation, delayed completion of mitosis, as well as induction of genomic instability are major effects of CYN in eukaryotic cells.
Interaction of Staphylococcus aureus alpha-toxin (hemolysin A, Hla) with eukaryotic cell membranes is mediated by proteinaceous receptors and certain lipid domains in host cell plasma membranes. Hla is secreted as a 33 kDa monomer that forms heptameric transmembrane pores whose action compromises maintenance of cell shape and epithelial tightness. It is not exactly known whether certain membrane lipid domains of host cells facilitate adhesion of Ha monomers, oligomerization, or pore formation. We used sphingomyelinase (hemolysin B, Hlb) expressed by some strains of staphylococci to pre-treat airway epithelial model cells in order to specifically decrease the sphingomyelin (SM) abundance in their plasma membranes. Such a pre-incubation exclusively removed SM from the plasma membrane lipid fraction. It abrogated the formation of heptamers and prevented the formation of functional transmembrane pores. Hla exposure of rHlb pre-treated cells did not result in increases in [Ca2+]i, did not induce any microscopically visible changes in cell shape or formation of paracellular gaps, and did not induce hypo-phosphorylation of the actin depolymerizing factor cofilin as usual. Removal of sphingomyelin from the plasma membranes of human airway epithelial cells completely abrogates the deleterious actions of Staphylococcus aureus alpha-toxin.