Refine
Document Type
- Article (6)
Language
- English (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
- - (4)
- drug release (3)
- celecoxib (2)
- efavirenz (2)
- fenofibrate (2)
- hot melt extrusion (2)
- ADGRE1 (1)
- Bioavailability (1)
- Cellulose (1)
- Compatibility (1)
Institute
Publisher
- MDPI (4)
- Springer Nature (2)
Non-alcoholic fatty liver disease (NAFLD) is gaining in importance and is linked to obesity.
Especially, the development of fibrosis and portal hypertension in NAFLD patients requires treatment.
Transgenic TGR(mREN2)27 rats overexpressing mouse renin spontaneously develop NAFLD with
portal hypertension but without obesity. This study investigated the additional role of obesity in this
model on the development of portal hypertension and fibrosis. Obesity was induced in twelve-week
old TGR(mREN2)27 rats after receiving Western diet (WD) for two or four weeks. Liver fibrosis
was assessed using standard techniques. Hepatic expression of transforming growth factor-β1
(TGF-β1), collagen type Iα1, α-smooth muscle actin, and the macrophage markers Emr1, as well as
the chemoattractant Ccl2, interleukin-1β (IL1β) and tumor necrosis factor-α (TNFα) were analyzed.
Assessment of portal and systemic hemodynamics was performed using the colored microsphere
technique. As expected, WD induced obesity and liver fibrosis as confirmed by Sirius Red and Oil Red
O staining. The expression of the monocyte-macrophage markers, Emr1, Ccl2, IL1β and TNFα were
increased during feeding of WD, indicating infiltration of macrophages into the liver, even though this
increase was statistically not significant for the EGF module-containing mucin-like receptor (Emr1)
mRNA expression levels. Of note, portal pressure increased with the duration of WD compared
to animals that received a normal chow. Besides obesity, WD feeding increased systemic vascular
resistance reflecting systemic endothelial and splanchnic vascular dysfunction. We conclude that
transgenic TGR(mREN2)27 rats are a suitable model to investigate NAFLD development with liver
fibrosis and portal hypertension. Tendency towards elevated expression of Emr1 is associated with
macrophage activity point to a significant role of macrophages in NAFLD pathogenesis, probably
due to a shift of the renin–angiotensin system towards a higher activation of the classical pathway.The hepatic injury induced by WD in TGR(mREN2)27 rats is suitable to evaluate different stages of
fibrosis and portal hypertension in NAFLD with obesity
The present study covers the synthesis, purification and evaluation of a novel aminomethacrylate-based copolymer in terms of its suitability for improving the solubility and in vitro release of poorly water-soluble drug compounds. The new copolymer was synthesized by solvent polymerization with radical initiation and by use of a chain transfer agent. Based on its composition, it can be considered as a modified type of dimethylaminoethyl methacrylate-butyl methacrylate-methyl methacrylate “EUDRAGIT® E PO” (ModE). ModE was specifically developed to provide a copolymer with processing and application properties that exceed those of commercially available (co-)polymers in solubility enhancement technologies where possible. By varying the concentration of the chain transfer agent in the radical polymerization process, the molecular weight of ModE was varied in a range of 173–305 kDa. To evaluate the solubility-enhancing properties of ModE, a series of drug-loaded extrudates were prepared by hot melt extrusion using the novel—as well as several commercially available—(co-)polymers. These extrudates were then subjected to comparative tests for amorphousness, solubility-enhancing properties, storage stability, and drug release. Celecoxib, efavirenz, and fenofibrate were used as model drugs in all experiments. Of all the (co-)polymers included in the study, ModE with a molecular weight of 173 kDa showed the best performance in terms of desired properties and was shown to be particularly suitable for preparing amorphous solid dispersions (ASDs) of the three model drugs, which in a first set of dissolution experiments showed better release behavior under pH conditions of the fasting stomach than higher molecular weight ModE types, as well as a variety of commercially available (co-)polymers. Therefore, the results demonstrate the successful synthesis of a new copolymer, which in future studies will be investigated in more detail for universal application in the field of solubility enhancement.
The present study focused on a new formulation approach to improving the solubility of drugs with poor aqueous solubility. A hot melt extrusion (HME) process was applied to prepare drug-loaded solid self-nanoemulsifying drug delivery systems (S-SNEDDS) by co-extrusion of liquid SNEDDS (L-SNEDDS) and different polymeric carriers. Experiments were performed with L-SNEDDS formulations containing celecoxib, efavirenz or fenofibrate as model drugs. A major objective was to identify a polymeric carrier and process parameters that would enable the preparation of stable S-SNEDDS without impairing the release behavior and storage stability of the L-SNEDDS used and, if possible, even improving them further. In addition to commercially available (co)polymers already used in the field of HME, a particular focus was on the evaluation of different variants of a recently developed aminomethacrylate-based copolymer (ModE) that differed in Mw. Immediately after preparation, the L-SNEDDS and S-SNEDDS formulations were tested for amorphicity by differential scanning calorimetry. Furthermore, solubility and dissolution tests were performed. In addition, the storage stability was investigated at 30 °C/65% RH over a period of three and six months, respectively. In all cases, amorphous formulations were obtained and, especially for the model drug celecoxib, S-SNEDDS were developed that maintained the rapid and complete drug release of the underlying L-SNEDDS even over an extended storage period. Overall, the data obtained in this study suggest that the presented S-SNEDDS approach is very promising, provided that drug-loaded L-SNEDDS are co-processed with a suitable polymeric carrier. In the case of celecoxib, the E-173 variant of the novel ModE copolymer proved to be a novel polymeric carrier with great potential for application in S-SNEDDS. The presented approach will, therefore, be pursued in future studies to establish S-SNEDDS as an alternative formulation to other amorphous systems.
Self-nanoemulsifying drug delivery systems (SNEDDS) represent an interesting platform for improving the oral bioavailability of poorly soluble lipophilic drugs. While Liquid-SNEDDS (L-SNEDDS) effectively solubilize the drug in vivo, they have several drawbacks, including poor storage stability. Solid-SNEDDS (S-SNEDDS) combine the advantages of L-SNEDDS with those of solid dosage forms, particularly stability. The aim of the present study was to convert celecoxib L-SNEDDS into S-SNEDDS without altering their release behavior. Various commercially available adsorptive carrier materials were investigated, as well as novel cellulose-based microparticles prepared by spray drying from an aqueous dispersion containing Diacel® 10 and methyl cellulose or gum arabic as a binder prior to their use. Particle size and morphology of the carrier materials were screened by scanning electron microscopy and their effects on the loading capacity for L-SNEDDS were investigated, and comparative in vitro dissolution studies of celecoxib L-SNEDDS and the different S-SNEDDS were performed immediately after preparation and after 3 months of storage. Among the adsorptive carrier materials, the novel cellulose-based microparticles were found to be the most suitable for the preparation of celecoxib S-SNEDDS from L-SNEDDS, enabling the preparation of a solid, stable formulation while preserving the in vitro release performance of the L-SNEDDS formulation.
Purpose
Mixing with liquids or soft foods is a common procedure to improve acceptability of oral medicines in children but may affect drug stability and the in vivo performance of the administered drug product. The aim of the present study was to obtain an overview of the variability of critical attributes of commonly used vehicles and to identify which vehicle characteristics need to be considered when developing in vitro methods for evaluating product quality.
Methods
One product of each vehicle listed in the FDA draft guidance “Use of Liquids and/or Soft Foods as Vehicles for Drug Administration” was analyzed with regard to composition, calorific content and physicochemical properties.
Results
The studied vehicles show wide variability, both in composition and physicochemical properties. No correlation was observed between vehicle composition and physicochemical properties. Comparison of results of the present study with previously published data also provided variability in physicochemical properties within individual vehicle types.
Conclusions
To identify acceptable (qualified) vehicles for global drug product labeling, it is important that the vehicles selected for in vitro compatibility screening reflect the variability in composition and essential physicochemical properties of the vehicles recommended on the product label, rather than relying on results obtained with a single vehicle of each type. Future activities will focus on the development of standardized dosing vehicles that can represent key vehicle characteristics in all their variability to ensure reliable risk assessment.