Refine
Document Type
- Article (14)
- Doctoral Thesis (1)
Has Fulltext
- yes (15)
Is part of the Bibliography
- no (15)
Keywords
- - (11)
- proteomics (5)
- 2D PAGE (2)
- <i>Streptococcus pneumoniae</i> (2)
- Bacillus subtilis (2)
- LL-37 (2)
- absolute protein quantification (2)
- adaptation (2)
- antimicrobial peptides (2)
- mass spectrometry (2)
Institute
- Abteilung für Mikrobiologie und Molekularbiologie (6)
- Institut für Mikrobiologie (5)
- Friedrich-Loeffler-Institut für Medizinische Mikrobiologie (1)
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung (MNF) (1)
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung (UMG) (1)
Publisher
Although the nose, as a gateway for organism–environment interactions, may have a key role in asthmatic exacerbation, the rhinobiome of exacerbated children with asthma was widely neglected to date. The aim of this study is to understand the microbiome, the microbial immunology, and the proteome of exacerbated children and adolescents with wheeze and asthma. Considering that a certain proportion of wheezers may show a progression to asthma, the comparison of both groups provides important information regarding clinical and phenotype stratification. Thus, deep nasopharyngeal swab specimens, nasal epithelial spheroid (NAEsp) cultures, and blood samples of acute exacerbated wheezers (WH), asthmatics (AB), and healthy controls (HC) were used for culture (n = 146), 16 S-rRNA gene amplicon sequencing (n = 64), and proteomic and cytokine analyses. Interestingly, Proteobacteria were over-represented in WH, whereas Firmicutes and Bacteroidetes were associated with AB. In contrast, Actinobacteria commonly colonized HCs. Moreover, Staphylococcaceae, Enterobacteriaceae, Burkholderiaceae, Xanthobacteraceae, and Sphingomonadaceae were significantly more abundant in AB compared to WH and HC. The α-diversity analyses demonstrated an increase of bacterial abundance levels in atopic AB and a decrease in WH samples. Microbiome profiles of atopic WH differed significantly from atopic AB, whereby atopic samples of WH were more homogeneous than those of non-atopic subjects. The NAEsp bacterial exposure experiments provided a disrupted epithelial cell integrity, a cytokine release, and cohort-specific proteomic differences especially for Moraxella catarrhalis cultures. This comprehensive dataset contributes to a deeper insight into the poorly understood plasticity of the nasal microbiota, and, in particular, may enforce our understanding in the pathogenesis of asthma exacerbation in childhood.
Understanding cellular mechanisms of stress management relies on omics data as a valuable resource. However, the lack of absolute quantitative data on protein abundances remains a significant limitation, particularly when comparing protein abundances across different cell compartments. In this study, we aimed to gain deeper insights into the proteomic responses of the Gram-positive model bacterium Bacillus subtilis to disulfide stress. We determined proteome-wide absolute abundances, focusing on different sub-cellular locations (cytosol and membrane) as well as the extracellular medium, and combined these data with redox state determination. To quantify secreted proteins in the culture medium, we developed a simple and straightforward protocol for the absolute quantification of extracellular proteins in bacteria. We concentrated extracellular proteins, which are highly diluted in the medium, using StrataClean beads along with a set of standard proteins to determine the extent of the concentration step. The resulting data set provides new insights into protein abundances in different sub-cellular compartments and the extracellular medium, along with a comprehensive proteome-wide redox state determination. Our study offers a quantitative understanding of disulfide stress management, protein production, and secretion in B. subtilis.
Das Ziel dieser Arbeit war die Entwicklung und Etablierung von Methoden zur absoluten und relativen Proteinquantifizierung. In darauf aufbauenden Studien sollten diese Methoden für die Untersuchung physiologisch relevanter Fragestellungen in Bakterien genutzt werden. Zum tieferen Verständnis der Bakterienphysiologie ist es unabdingbar, Mengenänderungen von Proteinen hochaufgelöst darstellen zu können. Relative Proteinquantifizierung erlaubt dabei die Untersuchung von Änderungen der Menge eines Proteins zwischen verschiedenen Proben eines Experiments. Im Rahmen der hier vorgelegten Arbeit wurden 2D PAGE und gelfreie massenspektrometrische Methoden in einer Studie (Tefon et al. 2011, Artikel I) angewendet, um Oberflächen- und Immunoproteine zweier Vakzinationsstämme des humanpathogenen Bakteriums Bordetella pertussis zu charakterisieren. Die relative Proteinquantifizierung erlaubt zwar Rückschlüsse auf die Mengenänderung eines Proteins zwischen verschiedenen Bedingungen, ermöglicht aber nur bedingt Aussagen über die absolute Menge der Proteine. Gerade absolute Proteinmengen und damit Proteinkonzentrationen sind jedoch Grundvoraussetzung für ein zielorientiertes Verwenden der gewonnenen Daten nicht nur im Kontext der Systembiologie. Im Rahmen dieser Arbeit wurde eine Methode entwickelt, in der durch Kombination zweier etablierter Proteomik-Methoden die absolute Quantifizierung für einen großen Teil der cytosolischen Proteine eines Organismus ermöglicht wird. In dieser Methode werden ausgewählte Proteine, deren genaue Konzentration durch gerichtete Massenspektrometrie bestimmt wurde, für die Kalibration von hoch auflösenden 2D Gelen genutzt (Maass et al. 2011, Artikel II). Um das Potential dieses Verfahrens zu verdeutlichen, wurde es für die Analyse der Anpassung von Bacillus subtilis und Staphylococcus aureus an Glukosehunger angewendet. Dabei konnten für 467 Proteine von B. subtilis in drei Zeitpunkten Proteinkonzentrationen bestimmt werden. Für die Etablierung der Methoden waren verschiedene Vorarbeiten nötig: I) Selektion geeigneter Kalibrationsproteine, II) Selektion geeigneter Standardpeptide und Optimierung der massenspektrometrischen Parameter zu deren absoluten Quantifizierung, III) Selektion eines geeigneten, proteinunspezifischen und hoch sensitiven Gelfarbstoffes, IV) Testung verschiedener Zellaufschlussmethoden und Etablierung einer Methode zur Bestimmung der Zellaufschlusseffizienz, V) Testung verschiedener Proteinbestimmungsmethoden zur genauen Bestimmung der Gesamtproteinkonzentration im komplexen cytosolischen Extrakt und VI) Optimierung der vollständigen enzymatischen Spaltung aller Proteine vor der massenspektrometrischen Analyse. Im Rahmen dieser Arbeit konnte außerdem gezeigt werden, dass sich die Kalibration der 2D Gele für die Ermittlung absoluter Daten zwischen Gelen übertragen lässt, was den Aufwand für große Zeitreihenexperimente deutlich reduziert. Die Genauigkeit und der dynamische Bereich 2D-gelbasierter relativer und absoluter Proteinquantifizierung kann durch eine erhöhte Reproduzierbarkeit, Auflösung und Sensitivität der Gele verbessert werden. Die Etablierung von HPE-Gelen führte zu 25 % mehr detektierbaren und damit quantifizierbaren Proteinspots und Proteinen bei deutlich erhöhter Reproduzierbarkeit (Moche et al. 2013, Artikel III). Die zusätzlich höhere Anzahl von Gelen mit quantifizierbarer Qualität verringert außerdem den Zeit- und Kostenaufwand vor allem für komplexe experimentelle Ansätze. Die neue Methode zur gelbasierten absoluten Proteinquantifizierung wurde in einer Folgestudie angewendet, um die Konzentrationen von mehr als 700 Proteinen von B. subtilis während der physiologisch relevanten Anpassung an verschiedene Stressbedingungen, nämlich Glukosehunger und Hitzestress, zu bestimmen (Maaß et al. 2014, Artikel IV). Der Vergleich der beiden Stressbedingungen ermöglicht eine Unterscheidung der generellen von der spezifischen Stressantwort, wobei die Analyse der Daten durch Berechnung der Proteinkosten und der Ressourcenverteilung auf verschiedene metabolische Pfade und regulatorische Einheiten unterstützt wurde. Da die Nutzung von 2D PAGE zur Proteinquantifizierung auf im Gel detektierbare Proteine beschränkt ist, ist es für eine höhere Proteomabdeckung sinnvoll, gelbasierte Methoden mit gelfreien Methoden zu ergänzen. Deshalb wurde eine Methode zur labelfreien MS-basierten absoluten Quantifizierung von Proteinen im großen Maßstab entwickelt und etabliert. In dieser gel- und labelfreien Quantifizierungstechnik wurde datenunabhängige, parallele Fragmentierung aller zeitgleich eluierenden Vorläufermoleküle (LC-MSE) genutzt. Auch für diese Methode der absoluten Proteinquantifizierung bildeten die im Rahmen dieser Arbeit entwickelten Probenaufbereitungsverfahren die Grundlage (Muntel et al. 2014, Artikel V).
The function and mode of action of small regulatory RNAs is currently still understudied in archaea. In the halophilic archaeon Haloferax volcanii, a plethora of sRNAs have been identified; however, in-depth functional analysis is missing for most of them. We selected a small RNA (s479) from Haloferax volcanii for detailed characterization. The sRNA gene is encoded between a CRISPR RNA locus and the Cas protein gene cluster, and the s479 deletion strain is viable and was characterized in detail. Transcriptome studies of wild-type Haloferax cells and the deletion mutant revealed upregulation of six genes in the deletion strain, showing that this sRNA has a clearly defined function. Three of the six upregulated genes encode potential zinc transporter proteins (ZnuA1, ZnuB1, and ZnuC1) suggesting the involvement of s479 in the regulation of zinc transport. Upregulation of these genes in the deletion strain was confirmed by northern blot and proteome analyses. Furthermore, electrophoretic mobility shift assays demonstrate a direct interaction of s479 with the target znuC1 mRNA. Proteome comparison of wild-type and deletion strains further expanded the regulon of s479 deeply rooting this sRNA within the metabolism of H. volcanii especially the regulation of transporter abundance. Interestingly, s479 is not only encoded next to CRISPR–cas genes, but the mature s479 contains a crRNA-like 5′ handle, and experiments with Cas protein deletion strains indicate maturation by Cas6 and interaction with Cas proteins. Together, this might suggest that the CRISPR–Cas system is involved in s479 function.
Epithelial cells are an important line of defense within the lung. Disruption of the epithelial barrier by pathogens enables the systemic dissemination of bacteria or viruses within the host leading to severe diseases with fatal outcomes. Thus, the lung epithelium can be damaged by seasonal and pandemic influenza A viruses. Influenza A virus infection induced dysregulation of the immune system is beneficial for the dissemination of bacteria to the lower respiratory tract, causing bacterial and viral co-infection. Host cells regulate protein homeostasis and the response to different perturbances, for instance provoked by infections, by post translational modification of proteins. Aside from protein phosphorylation, ubiquitination of proteins is an essential regulatory tool in virtually every cellular process such as protein homeostasis, host immune response, cell morphology, and in clearing of cytosolic pathogens. Here, we analyzed the proteome and ubiquitinome of A549 alveolar lung epithelial cells in response to infection by either Streptococcus pneumoniae D39Δcps or influenza A virus H1N1 as well as bacterial and viral co-infection. Pneumococcal infection induced alterations in the ubiquitination of proteins involved in the organization of the actin cytoskeleton and Rho GTPases, but had minor effects on the abundance of host proteins. H1N1 infection results in an anti-viral state of A549 cells. Finally, co-infection resembled the imprints of both infecting pathogens with a minor increase in the observed alterations in protein and ubiquitination abundance.