Refine
Year of publication
- 2020 (2)
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- - (2)
- ROS (2)
- kINPen (2)
- plasma medicine (2)
- HNSCC (1)
- RNS (1)
- oncology (1)
- reactive oxygen and nitrogen species (1)
- reactive oxygen species (1)
Institute
Publisher
- MDPI (2)
Despite continuous advances in therapy, malignant melanoma is still among the deadliest
types of cancer. At the same time, owing to its high plasticity and immunogenicity, melanoma is
regarded as a model tumor entity when testing new treatment approaches. Cold physical plasma is a
novel anticancer tool that utilizes a plethora of reactive oxygen species (ROS) being deposited on the
target cells and tissues. To test whether plasma treatment would enhance the toxicity of an established
antitumor therapy, ionizing radiation, we combined both physical treatment modalities targeting
B16F10 murine melanoma cell in vitro. Repeated rather than single radiotherapy, in combination
with gas plasma-introduced ROS, induced apoptosis and cell cycle arrest in an additive fashion. In
tendency, gas plasma treatment sensitized the cells to subsequent radiotherapy rather than the other
way around. This was concomitant with increased levels of TNFα, IL6, and GM-CSF in supernatants.
Murine JAWS dendritic cells cultured in these supernatants showed an increased expression of cell
surface activation markers, such as MHCII and CD83. For PD-L1 and PD-L2, increased expression
was observed. Our results are the first to suggest an additive therapeutic effect of gas plasma and
radiotherapy, and translational tumor models are needed to develop this concept further.