Refine
Document Type
- Article (6)
Language
- English (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
- - (3)
- COVID-19 (1)
- clinical trials (1)
- corticospinal excitability (1)
- differentiation (1)
- disability (1)
- estradiol; (1)
- fetal zone steroids; (1)
- finger-tapping task (1)
- go/no-go task (1)
Publisher
- Frontiers Media S.A. (3)
- BMJ Publishing Group (1)
- MDPI (1)
Objectives: Navigated transcranial magnetic stimulation (nTMS) provides significant benefits over classic TMS. Yet, the acquisition of individual structural magnetic resonance images (MRIindividual) is a time-consuming, expensive, and not feasible prerequisite in all subjects for spatial tracking and anatomical guidance in nTMS studies. We hypothesize that spatial transformation can be used to adjust MRI templates to individual head shapes (MRIwarped) and that TMS parameters do not differ between nTMS using MRIindividual or MRIwarped.
Materials and Methods: Twenty identical TMS sessions, each including four different navigation conditions, were conducted in 10 healthy subjects (one female, 27.4 ± 3.8 years), i.e., twice per subject by two researchers to additionally assess interrater reliabilities. MRIindividual were acquired for all subjects. MRIwarped were obtained through the spatial transformation of a template MRI following a 5-, 9-and 36-point head surface registration (MRIwarped_5, MRIwarped_9, MRIwarped_36). Stimulation hotspot locations, resting motor threshold (RMT), 500 μV motor threshold (500 μV-MT), and mean absolute motor evoked potential difference (MAD) of primary motor cortex (M1) examinations were compared between nTMS using either MRIwarped variants or MRIindividual and non-navigated TMS.
Results: M1 hotspots were spatially consistent between MRIindividual and MRIwarped_36 (insignificant deviation by 4.79 ± 2.62 mm). MEP thresholds and variance were also equivalent between MRIindividual and MRIwarped_36 with mean differences of RMT by −0.05 ± 2.28% maximum stimulator output (%MSO; t(19) = −0.09, p = 0.923), 500 μV-MT by −0.15 ± 1.63%MSO (t(19) = −0.41, p = 0.686) and MAD by 70.5 ± 214.38 μV (t(19) = 1.47, p = 0.158). Intraclass correlations (ICC) of motor thresholds were between 0.88 and 0.97.
Conclusions: NTMS examinations of M1 yield equivalent topographical and functional results using MRIindividual and MRIwarped if a sufficient number of registration points are used.
Background and Objective: Transcranial random noise stimulation (tRNS) is an emerging non-invasive brain stimulation technique to modulate brain function, with previous studies highlighting its considerable benefits in therapeutic stimulation of the motor system. However, high variability of results and bidirectional task-dependent effects limit more widespread clinical application. Task dependency largely results from a lack of understanding of the interaction between externally applied tRNS and the endogenous state of neural activity during stimulation. Hence, the aim of this study was to investigate the task dependency of tRNS-induced neuromodulation in the motor system using a finger-tapping task (FT) versus a go/no-go task (GNG). We hypothesized that the tasks would modulate tRNS’ effects on corticospinal excitability (CSE) and task performance in opposite directions.
Methods: Thirty healthy subjects received 10 min of tRNS of the dominant primary motor cortex in a double-blind, sham-controlled study design. tRNS was applied during two well-established tasks tied to diverging brain states. Accordingly, participants were randomly assigned to two equally-sized groups: the first group performed a simple motor training task (FT task), known primarily to increase CSE, while the second group performed an inhibitory control task (go/no-go task) associated with inhibition of CSE. To establish task-dependent effects of tRNS, CSE was evaluated prior to- and after stimulation with navigated transcranial magnetic stimulation.
Results: In an ‘activating’ motor task, tRNS during FT significantly facilitated CSE. FT task performance improvements, shown by training-related reductions in intertap intervals and increased number of finger taps, were similar for both tRNS and sham stimulation. In an ‘inhibitory’ motor task, tRNS during GNG left CSE unchanged while inhibitory control was enhanced as shown by slowed reaction times and enhanced task accuracy during and after stimulation.
Conclusion: We provide evidence that tRNS-induced neuromodulatory effects are task-dependent and that resulting enhancements are specific to the underlying task-dependent brain state. While mechanisms underlying this effect require further investigation, these findings highlight the potential of tRNS in enhancing task-dependent brain states to modulate human behavior.
Introduction
A substantial number of patients diagnosed with COVID-19 experience long-term persistent symptoms. First evidence suggests that long-term symptoms develop largely independently of disease severity and include, among others, cognitive impairment. For these symptoms, there are currently no validated therapeutic approaches available. Cognitive training interventions are a promising approach to counteract cognitive impairment. Combining training with concurrent transcranial direct current stimulation (tDCS) may further increase and sustain behavioural training effects. Here, we aim to examine the effects of cognitive training alone or in combination with tDCS on cognitive performance, quality of life and mental health in patients with post-COVID-19 subjective or objective cognitive impairments.
Methods and analysis
This study protocol describes a prospective randomised open endpoint-blinded trial. Patients with post-COVID-19 cognitive impairment will either participate in a 3-week cognitive training or in a defined muscle relaxation training (open-label interventions). Irrespective of their primary intervention, half of the cognitive training group will additionally receive anodal tDCS, all other patients will receive sham tDCS (double-blinded, secondary intervention). The primary outcome will be improvement of working memory performance, operationalised by an n-back task, at the postintervention assessment. Secondary outcomes will include performance on trained and untrained tasks and measures of health-related quality of life at postassessment and follow-up assessments (1 month after the end of the trainings).
Ethics and dissemination
Ethical approval was granted by the Ethics Committee of the University Medicine Greifswald (number: BB 066/21). Results will be available through publications in peer-reviewed journals and presentations at national and international conferences.
Trial registration number NCT04944147.
Oxygen causes white matter damage in preterm infants and male sex is a major risk factor
for poor neurological outcome, which speculates the role of steroid hormones in sex-based differences.
Preterm birth is accompanied by a drop in 17β-estradiol (E2) and progesterone along with increased
levels of fetal zone steroids (FZS). We performed a sex-based analysis on the FZS concentration
differences in urine samples collected from preterm and term infants. We show that, in preterm
urine samples, the total concentration of FZS, and in particular the 16α-OH-DHEA concentration, is
significantly higher in ill female infants as compared to males. Since we previously identified Nup133
as a novel target protein affected by hyperoxia, here we studied the effect of FZS, allopregnanolone
(Allo) and E2 on differentiation and Nup133 signaling using mouse-derived primary oligodendrocyte
progenitor cells (OPCs). We show that the steroids could reverse the effect of hyperoxia-mediated
downregulation of Nup133 in cultured male OPCs. The addition of FZS and E2 protected cells from
oxidative stress. However, E2, in presence of 16α-OH-DHEA, showed a negative effect on male
cells. These results assert the importance of sex-based differences and their potential implications in
preterm stress response.
Objectives: The significance of pre-motor (PMC) corticospinal projections in a frontoparietal motor network remains elusive. Temporal activation patterns can provide valuable information about a region's engagement in a hierarchical network. Navigated transcranial magnetic stimulation (nTMS)-induced virtual lesions provide an excellent method to study cortical physiology by disrupting ongoing activity at high temporal resolution and anatomical precision. We use nTMS-induced virtual lesions applied during an established behavioral task demanding pre-motor activation to clarify the temporal activation pattern of pre-motor corticospinal projections.
Materials and Methods: Ten healthy volunteers participated in the experiment (4 female, mean age 24 ± 2 years, 1 left-handed). NTMS was used to map Brodmann areae 4 and 6 for primary motor (M1) and PMC corticospinal projections. We then determined the stimulator output intensity required to elicit a 1 mV motor evoked potential (1 mV-MT) through M1 nTMS. TMS pulse were randomly delivered at distinct time intervals (40, 60, 80, 100, 120, and 140 ms) at 1 mV-MT intensity to M1, PMC and the DLPFC (dorsolateral pre-frontal cortex; control condition) before participants had to perform major changes of their trajectory of movement during a tracing task. Each participant performed six trials (20 runs per trial). Task performance and contribution of regions under investigation was quantified through calculating the tracing error induced by the stimulation.
Results: A pre-motor stimulation hotspot could be identified in all participants (16.3 ± 1.7 mm medial, 18.6 ± 1.4 mm anterior to the M1 hotspot). NTMS over studied regions significantly affected task performance at discrete time intervals (F(10, 80) = 3.25, p = 0.001). NTMS applied over PMC 120 and 140 ms before changes in movement trajectory impaired task performance significantly more than when applied over M1 (p = 0.021 and p = 0.003) or DLPFC (p = 0.017 and p < 0.001). Stimulation intensity did not account for error size (β = −0.0074, p = 1).
Conclusions: We provide novel evidence that the role of pre-motor corticospinal projections extends beyond that of simple corticospinal motor output. Their activation is crucial for task performance early in the stage of motor preparation suggesting a significant role in shaping voluntary movement. Temporal patterns of human pre-motor activation are similar to that observed in intracortical electrophysiological studies in primates.