Refine
Document Type
- Article (14)
- Doctoral Thesis (1)
Language
- English (15)
Has Fulltext
- yes (15)
Is part of the Bibliography
- no (15)
Keywords
- - (8)
- Staphylococcus aureus (4)
- <i>Staphylococcus aureus</i> (3)
- host adaptation (3)
- JSNZ (2)
- antibody (2)
- colonization (2)
- 6-min-walk-test (1)
- <i>Streptococcus mutans</i> (1)
- <i>Streptococcus oralis</i> (1)
Institute
- Institut für Immunologie u. Transfusionsmedizin - Abteilung Immunologie (11)
- Institut für Botanik und Landschaftsökologie & Botanischer Garten (1)
- Institut für Community Medicine (1)
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung (UMG) (1)
- Klinik und Poliklinik für Neurologie (1)
- Kliniken und Polikliniken für Innere Medizin (1)
Publisher
- MDPI (6)
- Frontiers Media S.A. (5)
- American Society for Microbiology (ASM) (1)
- Elsevier (1)
- S. Karger AG (1)
(1) Background: COVID-19 is often associated with significant long-term symptoms and disability, i.e., the long/post-COVID syndrome (PCS). Even after presumably mild COVID-19 infections, an increasing number of patients seek medical help for these long-term sequelae, which can affect various organ systems. The pathogenesis of PCS is not yet understood. Therapy has so far been limited to symptomatic treatment. The Greifswald Post COVID Rehabilitation Study (PoCoRe) aims to follow and deeply phenotype outpatients with PCS in the long term, taking a holistic and comprehensive approach to the analysis of their symptoms, signs and biomarkers. (2) Methods: Post-COVID outpatients are screened for symptoms in different organ systems with a standardized medical history, clinical examination, various questionnaires as well as physical and cardiopulmonary function tests. In addition, biomaterials are collected for the analysis of immunomodulators, cytokines, chemokines, proteome patterns as well as specific (auto)antibodies. Patients are treated according to their individual needs, adhering to the current standard of care. PoCoRe’s overall aim is to optimize diagnostics and therapy in PCS patients.
Whether mice are an appropriate model for S. aureus infection and vaccination studies is a matter of debate, because they are not considered as natural hosts of S. aureus. We previously identified a mouse-adapted S. aureus strain, which caused infections in laboratory mice. This raised the question whether laboratory mice are commonly colonized with S. aureus and whether this might impact on infection experiments. Publicly available health reports from commercial vendors revealed that S. aureus colonization is rather frequent, with rates as high as 21% among specific-pathogen-free mice. In animal facilities, S. aureus was readily transmitted from parents to offspring, which became persistently colonized. Among 99 murine S. aureus isolates from Charles River Laboratories half belonged to the lineage CC88 (54.5%), followed by CC15, CC5, CC188, and CC8. A comparison of human and murine S. aureus isolates revealed features of host adaptation. In detail, murine strains lacked hlb-converting phages and superantigen-encoding mobile genetic elements, and were frequently ampicillin-sensitive. Moreover, murine CC88 isolates coagulated mouse plasma faster than human CC88 isolates. Importantly, S. aureus colonization clearly primed the murine immune system, inducing a systemic IgG response specific for numerous S. aureus proteins, including several vaccine candidates. Phospholipase C emerged as a promising test antigen for monitoring S. aureus colonization in laboratory mice. In conclusion, laboratory mice are natural hosts of S. aureus and therefore, could provide better infection models than previously assumed. Pre-exposure to the bacteria is a possible confounder in S. aureus infection and vaccination studies and should be monitored.
Our goal was to provide a comprehensive overview of the antibody response to Staphylococcus aureus antigens in the general population as a basis for defining disease-specific profiles and diagnostic signatures. We tested the specific IgG and IgA responses to 79 staphylococcal antigens in 996 individuals from the population-based Study of Health in Pomerania. Using a dilution-based multiplex suspension array, we extended the dynamic range of specific antibody detection to seven orders of magnitude, allowing the precise quantification of high and low abundant antibody specificities in the same sample. The observed IgG and IgA antibody responses were highly heterogeneous with differences between individuals as well as between bacterial antigens that spanned several orders of magnitude. Some antigens elicited significantly more IgG than IgA and vice versa. We confirmed a strong influence of colonization on the antibody response and quantified the influence of sex, smoking, age, body mass index, and serum glucose on anti-staphylococcal IgG and IgA. However, all host parameters tested explain only a small part of the extensive variability in individual response to the different antigens of S. aureus.
Staphylococcus aureus can cause life-threatening diseases, and hospital- as well as community-associated antibiotic-resistant strains are an emerging global public health problem. Therefore, prophylactic vaccines or immune-based therapies are considered as alternative treatment opportunities. To develop such novel treatment approaches, a better understanding of the bacterial virulence and immune evasion mechanisms and their potential effects on immune-based therapies is essential. One important staphylococcal virulence factor is alpha-toxin, which is able to disrupt the epithelial barrier in order to establish infection. In addition, alpha-toxin has been reported to modulate other cell types including immune cells. Since CD4+ T cell-mediated immunity is required for protection against S. aureus infection, we were interested in the ability of alpha-toxin to directly modulate CD4+ T cells. To address this, murine naïve CD4+ T cells were differentiated in vitro into effector T cell subsets in the presence of alpha-toxin. Interestingly, alpha-toxin induced death of Th1-polarized cells, while cells polarized under Th17 conditions showed a high resistance toward increasing concentrations of this toxin. These effects could neither be explained by differential expression of the cellular alpha-toxin receptor ADAM10 nor by differential activation of caspases, but might result from an increased susceptibility of Th1 cells toward Ca2+-mediated activation-induced cell death. In accordance with the in vitro findings, an alpha-toxin-dependent decrease of Th1 and concomitant increase of Th17 cells was observed in vivo during S. aureus bacteremia. Interestingly, corresponding subsets of innate lymphoid cells and γδ T cells were similarly affected, suggesting a more general effect of alpha-toxin on the modulation of type 1 and type 3 immune responses. In conclusion, we have identified a novel alpha-toxin-dependent immunomodulatory strategy of S. aureus, which can directly act on CD4+ T cells and might be exploited for the development of novel immune-based therapeutic approaches to treat infections with antibiotic-resistant S. aureus strains.
Life-threatening toxic shock syndrome is often caused by the superantigen toxic shock syndrome toxin-1 (TSST-1) produced by Staphylococcus aureus. A well-known risk factor is the lack of neutralizing antibodies. To identify determinants of the anti-TSST-1 antibody response, we examined 976 participants of the German population-based epidemiological Study of Health in Pomerania (SHIP-TREND-0). We measured anti-TSST-1 antibody levels, analyzed the colonization with TSST-1-encoding S. aureus strains, and performed a genome-wide association analysis of genetic risk factors. TSST-1-specific serum IgG levels varied over a range of 4.2 logs and were elevated by a factor of 12.3 upon nasal colonization with TSST-1-encoding S. aureus. Moreover, the anti-TSST-1 antibody levels were strongly associated with HLA class II gene loci. HLA-DRB1*03:01 and HLA-DQB1*02:01 were positively, and HLA-DRB1*01:01 as well as HLA-DQB1*05:01 negatively associated with the anti-TSST-1 antibody levels. Thus, both toxin exposure and HLA alleles affect the human antibody response to TSST-1.
SUMMARY To date, Staphylococcus aureus is the most common cause of nosocomial infections and the species is becoming increasingly resistant to antibiotics. Beyond this, S. aureus colonises the nasal mucosa of circa 35% of the healthy population, so-called carriers. Importantly, S. aureus nasal carriage is a major risk factor for the development of S. aureus infections, which are commonly caused by the colonising strain. This underlines the importance of host factors for the outcome of S. aureus-host interactions. Despite the clinical importance of nasal carriage, little is known about humoral immune responses triggered by colonisation. Therefore, this thesis was focussed on the anti-staphylococcal antibody responses of S. aureus carriers and noncarriers. Staphylococcal superantigens (SAgs) served as indicator antigens for our studies. SAgs are virulence factors with extraordinary variability in the species S aureus and act as extremely potent T cell mitogens. To date, 19 different SAg gene loci are known in the species S. aureus, but molecular-epidemiological studies on the distribution of these genes are limited. Therefore, we established five multiplex PCRs for the detection of all known SAgs. With this robust and high-throughput technique we analysed the SAg gene patterns of more than 300 isolates, including 107 nasal isolates of S. aureus carriers and 88 blood culture isolates of hospital patients from Western Pomerania. The SAg gene patterns were highly heterogeneous, which can be explained by their localisation on mobile genetic elements (MGE), such as genomic islands, pathogenicity islands, phages and plasmids. Most isolates (~80%) harboured SAg genes, on average five to six, and SAgs of the enterotoxin gene cluster (egc) were by far the most prevalent. Additionally, we observed a strict correlation between the presence of SAg genes and the T cell mitogenic potency of clinical isolates. SAg-encoding MGEs can be distributed by two distinct mechanisms: horizontal transfer by bacteriophages and vertical transmission to daughter cells. To investigate the distribution of SAg genes within the S. aureus population, we determined the clonal relationship of our isolates by spa genotyping. Interestingly, SAg-gene encoding MGEs were not randomly distributed, but rather closely linked to clonal lineages. Each clonal lineage was characterised by defined combinations of SAg genes. These data suggest that the simultaneous assessment of virulence gene profiles and the genetic background strongly enhances the discriminatory power of genetic investigations into the mechanisms of S. aureus virulence. Indeed, the comparison of virulence genes within each clonal complex indicated a role in invasiveness for some MGEs, e.g. the exfoliative toxin D-encoding pathogenicity island, while rendering it unlikely for SAgs. It is known that neutralising serum antibodies against the SAgs SEA, SEB, SEC, SED and TSST-1 are frequently present in healthy individuals. However, the neutralising antibody profiles against more recently described SAgs or complex SAg cocktails as secreted by clinical isolates had not been determined so far. Therefore, we screened more than 100 sera for their SAg neutralising capacity with a neutralisation assay. We observed a marked heterogeneity and surprisingly large “gaps” in the neutralising capacity. Interestingly, the egc SAgs were inhibited only rarely (5-10%), whereas between 32 and 86% of the tested sera neutralised “classical” SAgs. This “egc gap” in the SAg-neutralising antibody profiles of healthy individuals was unexpected, since egc SAgs are by far the most prevalent SAgs. We could demonstrate that the “egc gap” is probably not due to different T cell activating properties of egc SAgs compared to classical SAgs, but rather to a differential regulation of SAg gene expression. S. aureus carriers have an increased risk of developing an S. aureus bacteraemia, which is in most cases caused by the colonising strain. Intriguingly, a large prospective clinical trial revealed a considerably higher mortality in noncarriers with invasive S. aureus strains compared to carriers with invasive disease. To explain these paradoxical findings, we hypothesised that in carriers partial immunity against the colonising strain may contribute to their improved outcome. We used SAgs as strain-specific indicator antigens. Importantly, sera from persistent carriers neutralised SAgs of their colonising strain with significantly higher efficiency than sera from noncarriers. This antibody response was strain-specific, since the antibody response of carriers against other SAgs did not differ from that of noncarriers. Thus, colonisation with S. aureus confers a strong and strain-specific antibody response against staphylococcal SAgs. We suggest that in carriers neutralising antibodies directed against SAgs and other staphylococcal virulence factors confer partial protection during systemic infections. This could explain the better prognosis of carriers with S. aureus bacteraemia compared to noncarriers. Moreover, our data imply that the key to understanding the pathogenesis of S. aureus disease may lie in the identification of host factors rather than bacterial factors. Such host factors could be the immune status and gene polymorphisms that contribute to colonisation, susceptibility to infection and outcome of infection. Finally, while the treatment of S. aureus bacteraemia with pooled immunoglobulins was performed in the past without significant success, our findings on strain-specific antibody profiles suggest that therapies with customised cocktails of monoclonal antibodies could have a higher efficacy.
Previous studies on the antimicrobial activity of cold atmospheric pressure argon plasma showed varying effects against mecA<sup>+</sup> or mecA<sup>-</sup>Staphylococcus aureus strains. This observation may have important clinical and epidemiological implications. Here, the antibacterial activity of argon plasma was investigated against 78 genetically different S. aureus strains, stratified by mecA, luk-P, agr1-4, or the cell wall capsule polysaccharide types 5 and 8. kINPen09® served as the plasma source for all experiments. On agar plates, mecA<sup>+</sup>luk-P<sup>-</sup>S. aureus strains showed a decreased susceptibility against plasma compared to other S. aureus strains. This study underlines the high complexity of microbial defence against antimicrobial treatment and confirms a previously reported strain-dependent susceptibility of S. aureus to plasma treatment.