Refine
Year of publication
- 2010 (1)
Document Type
- Doctoral Thesis (1)
Language
- German (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Keywords
- 4-Hydroxycoumarin (1)
- Cumarine (1)
- Erdöl-Kohlenwasserstoffe (1)
- Hefeartige Pilze (1)
- Phenylalkane (1)
- Schadstoffabbau (1)
- Trichosporon (1)
- coumarin (1)
- coumarins (1)
- filamentöse Pilze (1)
Institute
Abbau von Phenylalkanen und weiteren alkylsubstituierten Aromaten durch Hefen und filamentöse Pilze
(2010)
Gegenstand der vorliegenden Arbeit war es, den Abbau von Phenylalkanen durch eukaryotische Mikroorganismen, insbesondere Pilze, zu untersuchen. Im Focus der Dissertation lagen dabei Untersuchungen mit der Hefe Trichosporon asahii SBUG-Y 833. Des Weiteren erfolgten Analysen mit Candida maltosa SBUG Y 700, Trichosporon mucoides SBUG Y 801 und neun filamentösen Pilzen der Gattungen Cunninghamella, Fusarium, Lecanicillium, Mucor, Penicillium, Sporothrix und Umbelopsis. Als Substrate wurden Phenylalkane mit fünf bis zehn und zwölf Kohlenstoff-Atomen in der Alkylseitenkette eingesetzt. Zur Charakterisierung der Abbau- und Transformationsleistungen der Hefen, insbesondere von T. asahii, erfolgten darüber hinaus Biotransformationsexperimente mit Phenylalkan-Derivaten und aromatischen Säuren. Candida maltosa 1. Mit der Hefe C. maltosa, die zur Assimilation von n Alkanen befähigt ist, konnte ein Wachstum mit Phenylalkanen (0,5 % [v/v]), deren Alkylseitenkette mindestens 8 Kohlenstoff-Atome aufwiesen, ermittelt werden. 2. In Biotransformationsexperimenten mit ungeradzahligen Phenylalkanen (Phenylheptan und Phenylnonan) konnte eine kontinuierliche extrazelluläre Akkumulation von Benzoesäure nachgewiesen werden. Phenylalkane mit einer geraden Anzahl von Kohlenstoff-Atomen in der Alkylseitenkette (Phenylhexan, Phenyloctan, Phenyldecan und Phenyldodecan) werden via Phenylbuttersäure und 4 Phenyl 3-butensäure zu Phenylessigsäure abgebaut, die ebenso wie Benzoesäure extrazellulär angereichert wird. 3. C. maltosa ist nicht zur weiteren Oxidation von Benzoesäure und Phenylessigsäure befähigt und akkumuliert daher diese Säuren während des Phenylalkan-Abbaus als dead-end-Produkte. Trichosporon asahii 1. In Wachstumsexperimenten mit T. asahii konnte gezeigt werden, dass die Hefe n Alkane (n Dodecan, n Tetradecan, n Hexadecan) und Phenylalkane mit mindestens sieben Kohlenstoff-Atomen in der Alkylseitenkette assimilieren kann. 2. In Biotransformationsexperimenten mit ruhenden Zellen und Phenylheptan konnten anhand von HPLC-, GC-MS- und z. T. NMR-Analysen neun Produkte identifiziert werden: 7 Phenylheptansäure, 7-(2 Hydroxyphenyl)-heptansäure, 3 (2 Hydroxyphenyl) propionsäure, Benzoesäure, 3,4 Dihydroxybenzoesäure, Cumarin, 4 Hydroxycumarin, 4,6 Dihydroxycumarin und 4,8 Dihydroxy-cumarin. 3. Die Bildung der Metaboliten 2 Hydroxyphenylheptansäure und 2 Hydroxyphenylpropionsäure sowie der Cumarine konnte erstmals durch die Ergebnisse der vorliegenden Arbeit für den mikrobiellen Abbau von Phenylalkanen beschrieben werden. Die hydroxylierten Cumarine 4 Hydroxy-, 4,6 Dihydroxy- und 4,8 Dihydroxycumarin wurden bis Versuchende kontinuierlich im Inkubationsmedium akkumuliert, während die übrigen sechs Produkte nur zwischenzeitlich durch die Hefe ausgeschieden wurden. Die Inkubation von T. asahii mit Phenyloctan führte dagegen nur zum Nachweis der hydroxylierten Cumarine. In Biotransformationsexperimenten mit Phenylnonan, Phenyldecan und Phenyldodecan konnte als einziger Metabolit 4 Hydroxy-cumarin detektiert werden. Die für andere Hefen typischen Abbauprodukte wie Benzoesäure und Phenylessigsäure wurden durch diese Aromaten verwertende Hefe nicht akkumuliert. 4. Die Bildung von 4 Hydroxycumarin konnte auch in Biotransformationsexperimenten mit Phenylheptansäure, 2 Hydroxyphenyl-propionsäure, trans 2 Hydroxyzimtsäure sowie Cumarin nachgewiesen werden. Während die Transformation der zwei ortho-hydroxylierten Säuren in Ausbeuten von über 70 % 4 Hydroxycumarin innerhalb von 24 h resultierte, wurden nur 9,4 % der Phenylheptansäure und ca. 13 % des Cumarins in 4 Hydroxycumarin transformiert. 6. Im Hinblick auf die medizinische Bedeutung der Cumarine wurde die Bildung von Cumarinen aus den Präkursor-Stoffen 2,4 Dihydroxyphenylpropionsäure und 7 Hydroxycumarin durch T. asahii geprüft. Dabei konnte 4,7 Dihydroxycumarin während der Inkubation mit 2,4 Dihydroxyphenyl-propionsäure und 7 Hydroxycumarin nachgewiesen werden und zusätzlich 6,7 Dihydroxycumarin mit 7 Hydroxycumarin als Substrat. Eine 20-fache Steigerung der 6,7 Dihydroxycumarin-Konzentration wurde mit Zellen einer Phenol-Kultur im Vergleich zu Zellen, die mit Hefeextrakt kultiviert wurden, erreicht, was auf die Beteiligung einer induzierbaren Phenolhydroxylase hindeutet. 7. Unter Verwendung des Cytochrom P450-Inhibitors 1 Aminobenzotriazol konnte eine Beteiligung von Cytochrom-P450-Enzymen an der ortho-Hydroxylierung des Benzenrings von Phenylalkanen bzw. alkylsubstituierten aromatischen Säuren ermittelt werden. Diese Reaktion ist neben der Einführung einer Doppel-bindung in der Alkylseitenkette eine wesentliche Voraussetzung für die Bildung von Cumarinen. 8. Während der Inkubation von T. asahii mit dem Phenylheptan-Derivat Heptanophenon wurden primär Metaboliten detektiert, die am C1-Atom der Alkylseitenkette eine Hydroxy-Gruppe aufweisen und/oder subterminal am C4-, C5- und C6-Atom oxidiert sind. Aufgrund der Ergebnisse der vorliegenden Arbeit konnte für Hefen erstmals eine subterminale Oxidation von gesättigten Alkylketten nachgewiesen werden. Trichosporon mucoides 1. In den Untersuchungen mit T. mucoides konnte gezeigt werden, dass die Hefe nicht zur Assimilation von n Alkanen (n Dodecan, n Tetradecan, n Hexadecan) befähigt ist. Die Kultivierung mit Phenylnonan und Phenyldecan führte zwar nur zu einer geringen, dennoch signifikanten Zunahme der Biomasse. 2. Obwohl T. mucoides keine n Alkane verwerten kann, wurden in Biotransformationsexperimenten mit Phenylalkanen Metaboliten detektiert, die nicht nur aus terminalen und ß Oxidationsreaktionen an der Alkylseitenkette hervorgegangen sind, sondern auch subterminalen und am Ring stattfindenden Reaktionen zugeschrieben werden konnten. Das Metabolitenspektrum, das in den Untersuchungen mit Phenylalkanen und aromatischen Säuren ermittelt wurde, glich im Allgemeinen dem von T. asahii. Filamentöse Pilze 1. Mit Ausnahme von Penicillium chrysogenum zeigten alle Stämme der getesteten filamentösen Pilze die Fähigkeit zum Wachstum mit Phenyldodecan. Eine besonders starke Zunahme der Biomasse war dabei mit Sporothrix nivea SBUG M 35 und Umbelopsis isabellina SBUG M 1145 zu verzeichnen. Phenylalkane mit kürzeren Alkylseitenketten konnten von den meisten der untersuchten Pilze kaum bzw. nicht als Wachstumssubstrate genutzt werden. 2. In Biotransformationsexperimenten mit C. elegans, M. hiemalis und U. isabellina konnten 5 neuartige Metaboliten identifiziert werden: Zimtaldehyd, Zimtalkohol, Phenylpropanol und Benzylalkohol (deren Bildung wird auf reduktive Reaktionen der entsprechenden Carbonsäuren zurückgeführt) sowie ein Glycinamid der Zimtsäure, das eine Art Konjugat darstellt. 4. Während der Inkubation der filamentösen Pilze Sp. nivea SBUG-M 25 und SBUG M 242 sowie C. elegans und U. isabellina mit Phenylheptan wurde – analog zu Versuchen mit T. asahii - auch 4 Hydroxycumarin als Metabolit nachgewiesen.