Refine
Document Type
- Article (13)
Has Fulltext
- yes (13)
Is part of the Bibliography
- no (13)
Keywords
- - (7)
- rehabilitation (4)
- arm (3)
- interaction (3)
- stroke (3)
- Weaning (2)
- evidence (2)
- robot (2)
- social (2)
- training (2)
Institute
Publisher
- Frontiers Media S.A. (9)
- BioMed Central (BMC) (1)
- Elsevier (1)
- MDPI (1)
- Springer Nature (1)
Background
Even with high standards of acute care and neurological early rehabilitation (NER) a substantial number of patients with neurological conditions still need mechanical ventilation and/or airway protection by tracheal cannulas when discharged and hence home-based specialised intensive care nursing (HSICN). It may be possible to improve the home care situation with structured specialized long-term neurorehabilitation support and following up patients with neurorehabilitation teams. Consequently, more people might recover over an extended period to a degree that they were no longer dependent on HSICN.
Methods
This healthcare project and clinical trial implements a new specialised neurorehabilitation outreach service for people being discharged from NER with the need for HSICN. The multicentre, open, parallel-group RCT compares the effects of one year post-discharge specialized outpatient follow-up to usual care in people receiving HSICN. Participants will randomly be assigned to receive the new form of healthcare (intervention) or the standard healthcare (control) on a 2:1 basis. Primary outcome is the rate of weaning from mechanical ventilation and/or decannulation (primary outcome) after one year, secondary outcomes include both clinical and economic measures. 173 participants are required to corroborate a difference of 30 vs. 10% weaning success rate statistically with 80% power at a 5% significance level allowing for 15% attrition.
Discussion
The OptiNIV-Study will implement a new specialised neurorehabilitation outreach service and will determine its weaning success rates, other clinical outcomes, and cost-effectiveness compared to usual care for people in need for mechanical ventilation and/or tracheal cannula and hence HSICN after discharge from NER.
Trial registration
The trial OptiNIV has been registered in the German Clinical Trials Register (DRKS) since 18.01.2022 with the ID DRKS00027326.
One of the great challenges the world faces in terms of health care is the increasing number of
people living with neuro-disabilities that affect their ability to participate in societal activities.
Various neurological conditions such as stroke, multiple sclerosis, or Parkinson’s disease, to name
just a few, change cognitive, sensory, or motor capacities, alter the emotional well-being of those
affected, and lead to disability in their everyday lives.
Over the last few decades, aging populations and reduced mortality in many regions of the world
have increased the number of people living with neuro-disabilities considerably, an effect that is
still ongoing (1): for 2017, the worldwide prevalence of stroke (thousands) has been estimated to
be as high as 104178.7 (95% confidence interval, 95% CI 98454.0–110125.0), and years lived with
disabilities (YLD) (counts in thousands) caused by stroke were reported to amount to 18695.4
(95% CI 13,574–23686.9). The stroke-related increase in YLD (percentage change in counts)
was 40% (95% CI 38.4–41.4) from 1990 to 2007 and another 43.6% (39.6–47.8) during only 10
years from 2007 to 2017. The numbers are similarly impressive for other neurological disorders
(i.e., dementias, Parkinson’s disease, epilepsy, multiple sclerosis, motor neuron disease, headache
disorders, and others). Taken together, their worldwide prevalence (in thousands) in 2017 was
3121435.3 (95% CI 2951124.5–3316268.0), while YLD (thousands) in 2017 were 3121435.3 (95%
CI 2951124.5–3316268.0), with an increase in YLD by 35.1% (95% CI 31.9–38.1) from 1990 to 2007
and by a further 17.8% (95% CI 15.8–20.2) from 2007 to 2017.
These numbers not only demonstrate the huge global burden of disease and prevailing
neuro-disabilities, but they indicate a considerable increase in the number of people living with
neuro-disabilities with an accelerating dynamic over time (for stroke).
Background: Biomarkers for gains of evidence based interventions for upper limb motor training in the subacute stage following stroke have rarely been described. Information about these parameters might help to identify patients who benefit from specific interventions and to determine individually expected behavioral gains for a certain period of therapy.
Objective: To evaluate predictors for hand motor outcome after arm ability training in the subacute stage after stroke selected from known potentially relevant parameters (initial motor strength, structural integrity of the pyramidal tract and functional motor cortex integrity).
Methods: We applied the arm ability training (AAT) over 3 weeks to a subpopulation of stroke patients with mild arm paresis, i.e., in 14 patients on average 4 weeks after stroke. The following biomarkers were measured before therapy onset: grip strength on the affected hand, transcranial magnetic stimulation recruitment curve steepness over the primary motor hand area [slope ratio between the ipsilesional hemisphere (IH) and contralesional hemisphere (CH)], and diffusion weighted MRI fractional anisotropy (FA) in the posterior limb of the internal capsule (PLIC; determined as a lateralization index between IH and CH). Outcome was assessed as the AATgain (percentage improvement over training). The “Test d'Evaluation des Membres Supérieurs de Personnes Âgées” (TEMPA) was assessed before and after training to test for possible associations of AAT with activity of daily living.
Results: A stepwise linear regression identified the lateralization index of PLIC FA as the only significant predictor for AAT-gain (R2 = 0.519; P = 0.029). AAT-gain was positively associated (r = 0.59; P = 0.028) with improvement in arm function during daily activities (TEMPA).
Conclusions: While all mildly affected patients achieved a clinically relevant therapeutic effect, pyramidal tract integrity nevertheless had a modifying role for clinical benefit.
Arm Ability Training (AAT) has been specifically designed to promote manual dexterity recovery for stroke patients who have mild to moderate arm paresis. The motor control problems that these patients suffer from relate to a lack of efficiency in terms of the sensorimotor integration needed for dexterity. Various sensorimotor arm and hand abilities such as speed of selective movements, the capacity to make precise goal-directed arm movements, coordinated visually guided movements, steadiness, and finger dexterity all contribute to our “dexterity” in daily life. All these abilities are deficient in stroke patients who have mild to moderate paresis causing focal disability. The AAT explicitly and repetitively trains all these sensorimotor abilities at the individual's performance limit with eight different tasks; it further implements various task difficulty levels and integrates augmented feedback in the form of intermittent knowledge of results. The evidence from two randomized controlled trials indicates the clinical effectiveness of the AAT with regard to the promotion of “dexterity” recovery and the reduction of focal disability in stroke patients with mild to moderate arm paresis. In addition, the effects have been shown to be superior to time-equivalent “best conventional therapy.” Further, studies in healthy subjects showed that the AAT induced substantial sensorimotor learning. The observed learning dynamics indicate that different underlying sensorimotor arm and hand abilities are trained. Capacities strengthened by the training can, in part, be used by both arms. Non-invasive brain stimulation experiments and functional magnetic resonance imaging data documented that at an early stage in the training cortical sensorimotor network areas are involved in learning induced by the AAT, yet differentially for the tasks trained. With prolonged training over 2 to 3 weeks, subcortical structures seem to take over. While behavioral similarities in training responses have been observed in healthy volunteers and patients, training-induced functional re-organization in survivors of a subcortical stroke uniquely involved the ipsilesional premotor cortex as an adaptive recruitment of this secondary motor area. Thus, training-induced plasticity in healthy and brain-damaged subjects are not necessarily the same.
Quality of healthcare can be improved when the best external evidence available is integrated in clinical decision-making in a systematic explicit manner. With the rapid expansion of clinical evidence, the opportunities for evidence-based high-quality healthcare increase. Paradoxically, the likelihood of any one person to get a complete and balanced picture of the evidence available decreases. This is especially true for rehabilitation interventions that are complex in nature and where clinical research is rather diverse. Given the complex nature of the evidence, there is a substantial risk of misinterpreting the complex information both at the level of individual sources (e.g., reports of clinical trials) and for aggregated data syntheses (e.g., systematic reviews and meta-analyses). These risks are inherent in these sources themselves and are in addition related to the methodological expertise necessary to make valid use of the evidence for clinical decision-making. Taken together, there is a great demand for systematic structured guidance from evidence to clinical decision. This methodology paper describes a structured process for the development and report of evidence-based clinical practice recommendations that uses systematic reviews and meta-analyses as evidence source. It provides a comprehensive framework with specific requirements for the development group, the formulation of the healthcare question addressed, the systematic search for the evidence, its critical appraisal, the extraction and the outcome-centered presentation of the evidence, the rating of its quality, strengths and weaknesses, any further considerations relevant for decision-making, and an explicit recommendation statement along with its justification, implementation, and resource aspects. The suggested methodology uses international standards in evidence synthesis, critical appraisal of systematic reviews, rating the quality of evidence, characteristics of recommendations, and guideline development as developed by Cochrane, GRADE (Grading of Recommendations Assessment, Development and Evaluation), AMSTAR (A MeaSurement Tool to Assess systematic Reviews), and AGREE (Appraisal of Guidelines for REsearch & Evaluation). An added distinctive feature of the methodology is to focus on the most up-to-date, most valid evidence and hence to support the development of valid practice recommendations in an efficient way. Practice recommendations generated by such a valid methodology would be generally applicable and promote evidence-based clinical practice globally.
Objective: To characterize a socially active humanoid robot’s therapeutic interaction as a therapeutic assistant when providing arm rehabilitation (i.e., arm basis training (ABT) for moderate-to-severe arm paresis or arm ability training (AAT) for mild arm paresis) to stroke survivors when using the digital therapeutic system Evidence-Based Robot-Assistant in Neurorehabilitation (E-BRAiN) and to compare it to human therapists’ interaction.
Methods: Participants and therapy: Seventeen stroke survivors receiving arm rehabilitation (i.e., ABT [n = 9] or AAT [n = 8]) using E-BRAiN over a course of nine sessions and twenty-one other stroke survivors receiving arm rehabilitation sessions (i.e., ABT [n = 6] or AAT [n = 15]) in a conventional 1:1 therapist–patient setting. Analysis of therapeutic interaction: Therapy sessions were videotaped, and all therapeutic interactions (information provision, feedback, and bond-related interaction) were documented offline both in terms of their frequency of occurrence and time used for the respective type of interaction using the instrument THER-I-ACT. Statistical analyses: The therapeutic interaction of the humanoid robot, supervising staff/therapists, and helpers on day 1 is reported as mean across subjects for each type of therapy (i.e., ABT and AAT) as descriptive statistics. Effects of time (day 1 vs. day 9) on the humanoid robot interaction were analyzed by repeated-measures analysis of variance (rmANOVA) together with the between-subject factor type of therapy (ABT vs. AAT). The between-subject effect of the agent (humanoid robot vs. human therapist; day 1) was analyzed together with the factor therapy (ABT vs. AAT) by ANOVA.
Main results and interpretation: The overall pattern of the therapeutic interaction by the humanoid robot was comprehensive and varied considerably with the type of therapy (as clinically indicated and intended), largely comparable to human therapists’ interaction, and adapted according to needs for interaction over time. Even substantially long robot-assisted therapy sessions seemed acceptable to stroke survivors and promoted engaged patients’ training behavior.
Conclusion: Humanoid robot interaction as implemented in the digital system E-BRAiN matches the human therapeutic interaction and its modification across therapies well and promotes engaged training behavior by patients. These characteristics support its clinical use as a therapeutic assistant and, hence, its application to support specific and intensive restorative training for stroke survivors.
Objective: The instrument THERapy-related InterACTion (THER-I-ACT) was developed to document therapeutic interactions comprehensively in the human therapist–patient setting. Here, we investigate whether the instrument can also reliably be used to characterise therapeutic interactions when a digital system with a humanoid robot as a therapeutic assistant is used.
Methods: Participants and therapy: Seventeen stroke survivors receiving arm rehabilitation (i.e., arm basis training (ABT) for moderate-to-severe arm paresis [n = 9] or arm ability training (AAT) for mild arm paresis [n = 8]) using the digital therapy system E-BRAiN over a course of nine sessions. Analysis of the therapeutic interaction: A total of 34 therapy sessions were videotaped. All therapeutic interactions provided by the humanoid robot during the first and the last (9th) session of daily training were documented both in terms of their frequency and time used for that type of interaction using THER-I-ACT. Any additional therapeutic interaction spontaneously given by the supervising staff or a human helper providing physical assistance (ABT only) was also documented. All ratings were performed by two trained independent raters.
Statistical analyses: Intraclass correlation coefficients (ICCs) were calculated for the frequency of occurrence and time used for each category of interaction observed.
Results: Therapeutic interactions could comprehensively be documented and were observed across the dimensions provision of information, feedback, and bond-related interactions. ICCs for therapeutic interaction category assessments from 34 therapy sessions by two independent raters were high (ICC ≥0.90) for almost all categories of the therapeutic interaction observed, both for the occurrence frequency and time used for categories of therapeutic interactions, and both for the therapeutic interaction performed by the robot and, even though much less frequently observed, additional spontaneous therapeutic interactions by the supervisory staff and a helper being present. The ICC was similarly high for an overall subjective rating of the concentration and engagement of patients (0.87).
Conclusion: Therapeutic interactions can comprehensively and reliably be documented by trained raters using the instrument THER-I-ACT not only in the traditional patient–therapist setting, as previously shown, but also in a digital therapy setting with a humanoid robot as the therapeutic agent and for more complex therapeutic settings with more than one therapeutic agent being present.
We, here, provide a personal review article on the development of a functional MRI in the radiology departments of two German university medicine units. Although the international community for human brain mapping has met since 1995, the researchers fascinated by human brain function are still young and innovative. However, the impact of functional magnetic resonance imaging (fMRI) on prognosis and treatment decisions is restricted, even though standardized methods have been developed. The tradeoff between the groundbreaking studies on brain function and the attempt to provide reliable biomarkers for clinical decisions is large. By describing some historical developments in the field of fMRI, from a personal view, the rise of this method in clinical neuroscience during the last 25 years might be understandable. We aim to provide some background for (a) the historical developments of fMRI, (b) the establishment of two research units for fMRI in the departments of radiology in Germany, and (c) a description of some contributions within the selected fields of systems neuroscience, clinical neurology, and behavioral psychology.
Sensorimotor representations of swallowing in pre- and postcentral gyri of both cerebral hemispheres are interconnected by callosal tracts. We were interested in (1) the callosal location of fibers interconnecting the precentral gyri (with the primary motor cortex; M1) and the postcentral gyri (with the primary somatosensory cortex; S1) relevant for swallowing, and (2) the importance of their integrity given the challenges of swallowing compliance after recovery of dysphagia following stroke. We investigated 17 patients who had almost recovered from dysphagia in the chronic stage following stroke and age-matched and gender-matched healthy controls. We assessed their swallowing compliance, investigating swallowing of a predefined bolus in one swallowing movement in response to a ‘go’ signal when in a lying position. A somatotopic representation of swallowing was mapped for the pre- and postcentral gyrus, and callosal tract location between these regions was compared to results for healthy participants. We applied multi-directional diffusion-weighted imaging of the brain in patients and matched controls to calculate fractional anisotropy (FA) as a tract integrity marker for M1/S1 callosal fibers. Firstly, interconnecting callosal tract maps were well spatially separated for M1 and S1, but were overlapped for somatotopic differentiation within M1 and S1 in healthy participants’ data (HCP: head/face representation; in house dataset: fMRI-swallowing representation in healthy volunteers). Secondly, the FA for both callosal tracts, connecting M1 and S1 swallowing representations, were decreased for patients when compared to healthy volunteers. Thirdly, integrity of callosal fibers interconnecting S1 swallowing representation sites was associated with effective swallowing compliance. We conclude that somatosensory interaction between hemispheres is important for effective swallowing in the case of a demanding task undertaken by stroke survivors with good swallowing outcome from dysphagia.
In catastrophic situations such as pandemics, patients' healthcare including admissions to hospitals and emergency services are challenged by the risk of infection and by limitations of healthcare resources. In such a setting, the use of telemedicine interventions has become extremely important. New technologies have proved helpful in pandemics as a solution to improve the quality of life in vulnerable patients such as persons with neurological diseases. Moreover, telemedicine interventions provide at-home solutions allowing clinicians to telemonitor and assess patients remotely, thus minimizing risk of infection. After a review of different studies using telemedicine in neurological patients, we propose a telemedicine process flow for healthcare of subjects with chronic neurological disease to respond to the new challenges for delivering quality healthcare during the transformation of public and private healthcare organizations around the world forced by COVID-19 pandemic contingency. This telemedicine process flow represents a replacement for in-person treatment and thereby the provision equitable access to the care of vulnerable people. It is conceptualized as comprehensive service including (1) teleassistance with patient counseling and medical treatment, (2) telemonitoring of patients' health conditions and any changes over time, as well as (3) telerehabilitation, i.e., interventions to assess and promote body functions, activities, and consecutively participation. The hereby proposed telemedicine process flow could be adopted on a large scale to improve the public health response during healthcare crises like the COVID-19 pandemic but could equally promote equitable health care independent of people's mobility or location with respect to the specialized health care center.