Refine
Document Type
- Article (7)
Language
- English (7)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
- - (6)
- COVID-19 (3)
- MRI (2)
- blood platelets (2)
- complication (2)
- haemorrhage (2)
- Acute decompensated heart failure (1)
- Coagulation (1)
- Congestion (1)
- Free thyroxine (1)
Institute
Publisher
- BMJ Publishing Group Ltd (2)
- MDPI (2)
- Public Library of Science (PLoS) (1)
- S. Karger AG (1)
- Wiley (1)
Background and Objectives: Vaccine induced thrombotic thrombocytopenia (VITT) may occur after COVID-19 vaccination with recombinant adenoviral vector-based vaccines. VITT can present as cerebral sinus and venous thrombosis (CSVT), often complicated by intracranial hemorrhage. Today it is unclear, how long symptomatic VITT can persist. Here, we report the complicated long-term course of a VITT patient with extremely high titers of pathogenic anti-platelet factor 4 (PF4)-IgG antibodies. Methods: Clinical and laboratory findings are presented, including the course of platelet counts, D-Dimer levels, clinical presentation, imaging, SARS-CoV-2-serological and immunological, platelet activating anti-PF4-IgG, as well as autopsy findings. Results: The patient presented with extended superior sagittal sinus thrombosis with accompanying bifrontal intracerebral hemorrhage. Repeated treatment with intravenous immune globuline (IVIG) resolved recurrent episodes of thrombocytopenia. Moreover, the patient’s serum remained strongly positive for platelet-activating anti-PF4-IgG over three months. After a period of clinical stabilization, the patient suffered a recurrent and fatal intracranial hemorrhage. Conclusions: Complicated VITT with extremely high anti-PF4-IgG titers over three months can induce recurrent thrombocytopenia despite treatment with IVIG and anticoagulation. Plasma exchange, immunoadsorption, and /or immunosuppressive treatment may be considered in complicated VITT to reduce extraordinarily high levels of anti-PF4-IgG. Long-term therapy in such cases must take the individual bleeding risk and CSVT risk into account.
Mean platelet volume is more important than age for defining reference intervals of platelet counts
(2019)
Background: Hyperthyroidism is known to induce a hypercoagulable state. It stimulates plasma levels of procoagulative factors and reduces fibrinolytic activity. So far most of the data have been derived from patients with endogenous hyperthyroidism with a wide variability in the underlying pathogenesis and severity of the disease. Objectives: In this study we experimentally induced thyrotoxicosis in healthy volunteers to explore the effects of thyroxine excess on the plasma proteome. Using a shotgun proteomics approach, the abundance of plasma proteins was monitored before, during and after thyrotoxicosis. Methods: Sixteen healthy male subjects were sampled at baseline, 4 and 8 weeks under 250 µg/day thyroxine p.o., as well as 4 and 8 weeks after stopping the application. Plasma proteins were analyzed after depletion of 6 high-abundance proteins (MARS6) by LC-ESI-MS/MS mass spectrometry. Mass spectrometric raw data were processed using a label-free, intensity-based workflow. Subsequently, the linear dependence between protein abundances and fT<sub>4</sub> levels were calculated using a Pearson correlation. Results: All subjects developed biochemical thyrotoxicosis, and this effect was reversed within the first 4 weeks of follow-up. None of the volunteers noticed any subjective symptoms. Levels of 10 proteins involved in the coagulation cascade specifically correlated with fT<sub>4</sub>, supporting an influence of thyroid hormone levels on blood coagulation even at nonpathological levels. Conclusions: The results suggest that experimental thyrotoxicosis exerts selective and specific thyroxine-induced effects on coagulation markers. Our study design allows assessment of thyroid hormone effects on plasma protein levels without secondary effects of other diseases or therapies.
Abstract
Aims
Treating patients with acute decompensated heart failure (ADHF) presenting with volume overload is a common task. However, optimal guidance of decongesting therapy and treatment targets are not well defined. The inferior vena cava (IVC) diameter and its collapsibility can be used to estimate right atrial pressure, which is a measure of right‐sided haemodynamic congestion. The CAVA‐ADHF‐DZHK10 trial is designed to test the hypothesis that ultrasound assessment of the IVC in addition to clinical assessment improves decongestion as compared with clinical assessment alone.
Methods and results
CAVA‐ADHF‐DZHK10 is a randomized, controlled, patient‐blinded, multicentre, parallel‐group trial randomly assigning 388 patients with ADHF to either decongesting therapy guided by ultrasound assessment of the IVC in addition to clinical assessment or clinical assessment alone. IVC ultrasound will be performed daily between baseline and hospital discharge in all patients. However, ultrasound results will only be reported to treating physicians in the intervention group. Treatment target is relief of congestion‐related signs and symptoms in both groups with the additional goal to reduce the IVC diameter ≤21 mm and increase IVC collapsibility >50% in the intervention group. The primary endpoint is change in N‐terminal pro‐brain natriuretic peptide from baseline to hospital discharge. Secondary endpoints evaluate feasibility, efficacy of decongestion on other scales, and the impact of the intervention on clinical endpoints.
Conclusions
CAVA‐ADHF‐DZHK10 will investigate whether IVC ultrasound supplementing clinical assessment improves decongestion in patients admitted for ADHF.
Vaccine-induced immune thrombotic thrombocytopenia (VITT) and cerebral venous sinus thrombosis (CVST) have been recently described as rare complications following vaccination against SARS-CoV-2 with vector vaccines. We report a case of a young woman who presented with VITT and cerebral CVST 7 days following vaccination with ChAdOx1 nCov-19 (AstraZeneca). While the initial MRI was considered void of pathological findings, MRI 3 days later revealed extensive CVST of the transversal and sigmoidal sinus with intracerebral haemorrhage. Diagnostic tests including a platelet-factor-4-induced platelet activation assay confirmed the diagnosis of VITT. Treatment with intravenous immunoglobulins and argatroban resulted in a normalisation of platelet counts and remission of CVST.
Vaccine-induced immune thrombotic thrombocytopenia (VITT) and cerebral venous sinus thrombosis (CVST) have been recently described as rare complications following vaccination against SARS-CoV-2 with vector vaccines. We report a case of a young woman who presented with VITT and cerebral CVST 7 days following vaccination with ChAdOx1 nCov-19 (AstraZeneca). While the initial MRI was considered void of pathological findings, MRI 3 days later revealed extensive CVST of the transversal and sigmoidal sinus with intracerebral haemorrhage. Diagnostic tests including a platelet-factor-4-induced platelet activation assay confirmed the diagnosis of VITT. Treatment with intravenous immunoglobulins and argatroban resulted in a normalisation of platelet counts and remission of CVST.