Refine
Document Type
- Article (17)
Language
- English (17)
Has Fulltext
- yes (17)
Is part of the Bibliography
- no (17)
Keywords
- - (16)
- plasma medicine (8)
- kINPen (5)
- reactive oxygen species (5)
- ROS (4)
- reactive oxygen and nitrogen species (4)
- cold physical plasma (3)
- cancer (2)
- cold atmospheric pressure plasma (2)
- low temperature plasma (2)
Institute
- Institut für Hygiene und Umweltmedizin (6)
- Klinik und Poliklinik für Mund-, Kiefer- und Gesichtschirurgie/Plastische Operationen (4)
- Klinik und Poliklinik für Chirurgie Abt. für Viszeral-, Thorax- und Gefäßchirurgie (3)
- Institut für Physik (2)
- Institut für Biochemie (1)
- Zentrum für Zahn-, Mund- und Kieferheilkunde (1)
Publisher
- MDPI (12)
- Frontiers Media S.A. (2)
- IOP Publishing (2)
- Springer Nature (1)
AbstractThe 2022 Roadmap is the next update in the series of Plasma Roadmaps published by Journal of Physics D with the intent to identify important outstanding challenges in the field of low-temperature plasma (LTP) physics and technology. The format of the Roadmap is the same as the previous Roadmaps representing the visions of 41 leading experts representing 21 countries and five continents in the various sub-fields of LTP science and technology. In recognition of the evolution in the field, several new topics have been introduced or given more prominence. These new topics and emphasis highlight increased interests in plasma-enabled additive manufacturing, soft materials, electrification of chemical conversions, plasma propulsion, extreme plasma regimes, plasmas in hypersonics, data-driven plasma science and technology and the contribution of LTP to combat COVID-19. In the last few decades, LTP science and technology has made a tremendously positive impact on our society. It is our hope that this roadmap will help continue this excellent track record over the next 5–10 years.
Objectives
Biofilm removal is the decisive factor for the control of peri-implantitis. Cold atmospheric pressure plasma (CAP) can become an effective aid due to its ability to destroy and to inactivate bacterial biofilm residues. This study evaluated the cleaning efficiency of CAP, and air-polishing with glycine (APG) or erythritol (APE) containing powders alone or in combination with CAP (APG + CAP, APE + CAP) on sandblasted/acid etched, and anodised titanium implant surface.
Materials and methods
On respective titanium discs, a 7-day ex vivo human biofilm was grown. Afterwards, the samples were treated with CAP, APG, APE, APG + CAP, and APE + CAP. Sterile and untreated biofilm discs were used for verification. Directly after treatment and after 5 days of incubation in medium at 37 °C, samples were prepared for examination by fluorescence microscopy. The relative biofilm fluorescence was measured for quantitative analyses.
Results
Air-polishing with or without CAP removed biofilms effectively. The combination of air-polishing with CAP showed the best cleaning results compared to single treatments, even on day 5. Immediately after treatment, APE + CAP showed insignificant higher cleansing efficiency than APG + CAP.
Conclusions
CAP supports mechanical cleansing and disinfection to remove and inactivate microbial biofilm on implant surfaces significantly. Here, the type of the powder was not important. The highest cleansing results were obtained on sandblasted/etched surfaces.
Clinical relevance.
Microbial residuals impede wound healing and re-osseointegration after peri-implantitis treatment. Air-polishing treatment removes biofilms very effectively, but not completely. In combination with CAP, microbial free surfaces can be achieved. The tested treatment regime offers an advantage during treatment of peri-implantitis.
Molecular Mechanisms of the Efficacy of Cold Atmospheric Pressure Plasma (CAP) in Cancer Treatment
(2020)
Despite continuous advances in therapy, malignant melanoma is still among the deadliest
types of cancer. At the same time, owing to its high plasticity and immunogenicity, melanoma is
regarded as a model tumor entity when testing new treatment approaches. Cold physical plasma is a
novel anticancer tool that utilizes a plethora of reactive oxygen species (ROS) being deposited on the
target cells and tissues. To test whether plasma treatment would enhance the toxicity of an established
antitumor therapy, ionizing radiation, we combined both physical treatment modalities targeting
B16F10 murine melanoma cell in vitro. Repeated rather than single radiotherapy, in combination
with gas plasma-introduced ROS, induced apoptosis and cell cycle arrest in an additive fashion. In
tendency, gas plasma treatment sensitized the cells to subsequent radiotherapy rather than the other
way around. This was concomitant with increased levels of TNFα, IL6, and GM-CSF in supernatants.
Murine JAWS dendritic cells cultured in these supernatants showed an increased expression of cell
surface activation markers, such as MHCII and CD83. For PD-L1 and PD-L2, increased expression
was observed. Our results are the first to suggest an additive therapeutic effect of gas plasma and
radiotherapy, and translational tumor models are needed to develop this concept further.