Refine
Document Type
- Article (6)
- Doctoral Thesis (1)
Language
- English (7)
Is part of the Bibliography
- no (7)
Keywords
- - (5)
- tree-rings (3)
- dendrometer (2)
- drought (2)
- waterlogging (2)
- Baltic Sea (1)
- Buche (1)
- Dendrochronologie (1)
- Eiche (1)
- Europe (1)
Publisher
- Frontiers Media S.A. (2)
- IOP Publishing (1)
- MDPI (1)
- Wiley (1)
- frontiers in Forests and Global Change (1)
Global change, amongst others characterized by increasing temperatures, altered precipitation patterns, an increase of extreme climatic events and continued atmospheric depositions of pollutants, is expected to severely impact forest ecosystems worldwide. The complex interplay between different factors acting upon tree growth, combined with regional patterns in climatic change calls for a region specific evaluation of the possible consequences on forest ecosystems. For northeastern Germany regional climate models identify a rise in temperatures and a change in precipitation patterns. Drier summers and wetter winters together with an increase in extreme weather events are seen as the most pronounced changes that will occur during the 21st century. In this thesis I analysed past growth rates and climate-growth relationships in different stands of beech (Fagus sylvatica L.) and oak (Quercus robur L.) along a gradient of decreasing precipitation in a space for time approach. Special attention was paid to the influence of summer drought, soil waterlogging and the importance of site conditions in modulating the reactions to these climatic stressors. Departing from these retrospective analyses, future growth trends are modelled for beech, oak and Scots pine (Pinus sylvestris L.), based on projections of a regional climate model until the year 2100. Furthermore, I studied the influence of sudden and extreme shifts in hydrological conditions on the growth of oaks in a drained peatland that was subject to catastrophic rewetting. All analyses of this thesis are based on ring-width and wood anatomical features applying a variety of dendrochronological methods. The gradient approach revealed similar climate-growth relationships for beech and oak on drought exposed, sandy sites, where water availability during early summer was the main growth-limiting factor for both species. Decreasing precipitation rates towards the East are associated with higher drought susceptibility, especially for beech. As a result, competitive superiority of beech over oak decreases. In a drier future the competitive balance between the two species may shift (rank reversal). During the past decades beech has shown larger interannual growth variability and a higher number of growth depressions. These changes might indicate that increasing temperatures and climatic variability are already affecting its growth patterns and climate sensitivity. This is in line with the prospective modelling approach. According to our models, growth trends will turn negative for beech and oak towards the end of the 21st century, with beech showing the highest growth reduction (23% compared to the reference period 1971-2000). For pine, modelled growth rates show only minor changes. Whereas beech and oak shared a high common signal on the dry sites, the two species differed in high frequency ring patterns on the wet sites. On poorly drained, loamy soils beech, with its superficial root system, suffered from summer droughts. In contrast, on these sites ring-width of pedunculate oak was not correlated to summer moisture conditions resulting in differing interannual ring patterns between dry and wet sites. Wet periods with high soil water saturation did not have a negative influence on the growth of either species. Such a lack of response is not surprising for oak, which is generally known as rather tolerant to soil waterlogging, but it indicates an unexpectedly high tolerance of beech to stagnating wetness. Using the natural laboratory of an oak forest that suffered a catastrophic flooding I could show that slower grown trees that had likely been suppressed displayed a higher adaptive capacity compared with bigger, dominant trees. Many of the previously dominant individuals died within 18 years after the event. Trees that survived the groundwater rise displayed a typical ring pattern: growth was suppressed for a few years, but afterwards recovered and even surpassed previous growth rates, most likely as a result of competition release. The sudden hydrological change left a clear imprint in ring patterns and wood anatomical features in both the dying and the surviving trees. This differentiated imprint may be helpful for a better interpretation of growth patterns found in subfossil bog oaks, an important climate proxy of the Holocene. The insights gained from this thesis support existing concerns about drought induced growth decline for oak, but especially for beech. Changes in precipitation patterns might lead to wetter conditions during winter, but these will likely have only little effect on growth. Both s show rather high resilience to stagnating wetness. More likely, it are extreme events like prolonged droughts or heavy rainfalls that might breach thresholds in the ability of the two species to cope with too much or too little water. Such extreme events thus pose a strong risk to the future growth performance of both oak and beech.
AbstractUsing measurements from high resolution monitoring of radial tree-growth we present new data of the growth reactions of four widespread broadleaved tree-species to the combined European drought years 2018 and 2019. We can show that, in contrast to field crops, trees could make better use of the winter soil moisture storage in 2018 which buffered them from severe drought stress and growth depressions in this year. Nevertheless, legacy effects of the 2018 drought accompanied by sustained low soil moisture conditions (missing recharge in winter) and again higher than average temperatures and low precipitation in spring/summer 2019 have resulted in severe growth reductions for all studied tree-species in this year. This highlights the pivotal role of soil water recharge in winter. Although short term resistance to hot summers can be high if sufficient winter precipitations buffers forest stands from drought damage, legacy effects will strongly impact tree growth in subsequent years if the drought persists. The two years 2018 and 2019 are extreme with regard to historical instrumental data but, according to regional climate models, resemble rather normal conditions of the climate in the second half of the 21st century. Therefore the observed strongly reduced growth rates can provide an outlook on future forest growth potential in northern Central Europe and beyond.
Changes in the environment will alter the growth rate of trees and forests. Different
disciplines assess such growth rates differently, for example, with tree-ring width
data, forest inventories or with carbon-flux data from eddy covariance towers. Such
data is used to quantify forests biomass increment, forest’s carbon sequestration
or to reconstruct environmental variables before instrumental records. However, raw
measurement data is typically not considered to be representative for the average
growth rate of trees or forests. Depending on the research question, the effects of
certain environmental variables or effects of tree and forest structure have to be
removed first. It can be challenging to define and quantify a growth trend that can
answer a specific research question because trees and forests grow and respond
to environmental change in multiple ways simultaneously, for example, with altered
radial increment, height growth, and stand density. Further challenges pose time-lagged
feedback loops, for example, between height and radial increment or between stand
density and radial increment. Generally, different environments will lead to different
tree and forest structures, but because of tree’s longevity this adaptation to the new
environment will take decades or even centuries. Consequently, there can be an offset
between the present forest structure and what we term the potential natural forest (PNF):
Similar to the potential natural vegetation (PNV), the PNF represents that forest that
would develop under the current environmental conditions in the absence of human
intervention. Because growth rates are affected by the tree and forest structure, growthtrend estimates will differ between the present and the potential forest. Consequently, if
the legacy effects of the past are not of interest, the PNF is the theoretical baseline to
correct and estimate growth trends
Abstract
The role of future forests in global biogeochemical cycles will depend on how different tree species respond to climate. Interpreting the response of forest growth to climate change requires an understanding of the temporal and spatial patterns of seasonal climatic influences on the growth of common tree species. We constructed a new network of 310 tree‐ring width chronologies from three common tree species (Quercus robur, Pinus sylvestris and Fagus sylvatica) collected for different ecological, management and climate purposes in the south Baltic Sea region at the border of three bioclimatic zones (temperate continental, oceanic, southern boreal). The major climate factors (temperature, precipitation, drought) affecting tree growth at monthly and seasonal scales were identified. Our analysis documents that 20th century Scots pine and deciduous species growth is generally controlled by different climate parameters, and that summer moisture availability is increasingly important for the growth of deciduous species examined. We report changes in the influence of winter climate variables over the last decades, where a decreasing influence of late winter temperature on deciduous tree growth and an increasing influence of winter temperature on Scots pine growth was found. By comparing climate–growth responses for the 1943–1972 and 1973–2002 periods and characterizing site‐level growth response stability, a descriptive application of spatial segregation analysis distinguished sites with stable responses to dominant climate parameters (northeast of the study region), and sites that collectively showed unstable responses to winter climate (southeast of the study region). The findings presented here highlight the temporally unstable and nonuniform responses of tree growth to climate variability, and that there are geographical coherent regions where these changes are similar. Considering continued climate change in the future, our results provide important regional perspectives on recent broad‐scale climate–growth relationships for trees across the temperate to boreal forest transition around the south Baltic Sea.
Human-driven peatland drainage has occurred in Europe for centuries, causing habitat degradation and leading to the emission of greenhouse gases. As such, in the last decades, there has been an increase in policies aiming at restoring these habitats through rewetting. Alder (Alnus glutinosa L.) is a widespread species in temperate forest peatlands with a seemingly high waterlogging tolerance. Yet, little is known about its specific response in growth and wood traits relevant for tree functioning when dealing with changing water table levels. In this study, we investigated the effects of rewetting and extreme flooding on alder growth and wood traits in a peatland forest in northern Germany. We took increment cores from several trees at a drained and a rewetted stand and analyzed changes in ring width, wood density, and xylem anatomical traits related to the hydraulic functioning, growth, and mechanical support for the period 1994–2018. This period included both the rewetting action and an extreme flooding event. We additionally used climate-growth and climate-density correlations to identify the stand-specific responses to climatic conditions. Our results showed that alder growth declined after an extreme flooding in the rewetted stand, whereas the opposite occurred in the drained stand. These changes were accompanied by changes in wood traits related to growth (i.e., number of vessels), but not in wood density and hydraulic-related traits. We found poor climate-growth and climate-density correlations, indicating that water table fluctuations have a stronger effect than climate on alder growth. Our results show detrimental effects on the growth of sudden water table changes leading to permanent waterlogging, but little implications for its wood density and hydraulic architecture. Rewetting actions should thus account for the loss of carbon allocation into wood and ensure suitable conditions for alder growth in temperate peatland forests.
Determining the effect of a changing climate on tree growth will ultimately depend on our understanding of wood formation processes and how they can be affected by environmental conditions. In this context, monitoring intra-annual radial growth with high temporal resolution through point dendrometers has often been used. Another widespread approach is the microcoring method to follow xylem and phloem formation at the cellular level. Although both register the same biological process (secondary growth), given the limitations of each method, each delivers specific insights that can be combined to obtain a better picture of the process as a whole. To explore the potential of visualizing combined dendrometer and histological monitoring data and scrutinize intra-annual growth data on both dimensions (dendrometer → continuous; microcoring → discrete), we developed DevX (Dendrometer vs. Xylogenesis), a visualization application using the “Shiny” package in the R programming language. The interactive visualization allows the display of dendrometer curves and the overlay of commonly used growth model fits (Gompertz and Weibull) as well as the calculation of wood phenology estimates based on these fits (growth onset, growth cessation, and duration). Furthermore, the growth curves have interactive points to show the corresponding histological section, where the amount and development stage of the tissues at that particular time point can be observed. This allows to see the agreement of dendrometer derived phenology and the development status at the cellular level, and by this help disentangle shrinkage and swelling due to water uptake from actual radial growth. We present a case study with monitoring data for Acer pseudoplatanus L., Fagus sylvatica L., and Quercus robur L. trees growing in a mixed stand in northeastern Germany. The presented application is an example of the innovative and easy to access use of programming languages as basis for data visualization, and can be further used as a learning tool in the topic of wood formation and its ecology. Combining continuous dendrometer data with the discrete information from histological-sections provides a tool to identify active periods of wood formation from dendrometer series (calibrate) and explore monitoring datasets.