Refine
Document Type
- Article (55)
Language
- English (55)
Has Fulltext
- yes (55)
Is part of the Bibliography
- no (55)
Keywords
- - (21)
- proteomics (6)
- Alzheimer’s disease (2)
- SP3 (2)
- autophagy (2)
- depression (2)
- general population (2)
- heart failure (2)
- mass spectrometry (2)
- secretome (2)
Institute
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung (UMG) (11)
- Kliniken und Polikliniken für Innere Medizin (8)
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung (MNF) (7)
- Klinik für Psychiatrie und Psychotherapie (6)
- Institut für Immunologie (5)
- Institut für Anatomie und Zellbiologie (2)
- Institut für Biochemie (2)
- Institut für Bioinformatik (2)
- Institut für Community Medicine (2)
- Institut für Klinische Chemie und Laboratoriumsmedizin (2)
Publisher
- MDPI (19)
- Frontiers Media S.A. (11)
- Nature Publishing Group (4)
- Public Library of Science (PLoS) (3)
- Springer Nature (3)
- Wiley (3)
- S. Karger AG (2)
- Taylor & Francis (2)
- AO Research Institute Davos (1)
- American Society for Microbiology (ASM) (1)
(1) Background: COVID-19 is often associated with significant long-term symptoms and disability, i.e., the long/post-COVID syndrome (PCS). Even after presumably mild COVID-19 infections, an increasing number of patients seek medical help for these long-term sequelae, which can affect various organ systems. The pathogenesis of PCS is not yet understood. Therapy has so far been limited to symptomatic treatment. The Greifswald Post COVID Rehabilitation Study (PoCoRe) aims to follow and deeply phenotype outpatients with PCS in the long term, taking a holistic and comprehensive approach to the analysis of their symptoms, signs and biomarkers. (2) Methods: Post-COVID outpatients are screened for symptoms in different organ systems with a standardized medical history, clinical examination, various questionnaires as well as physical and cardiopulmonary function tests. In addition, biomaterials are collected for the analysis of immunomodulators, cytokines, chemokines, proteome patterns as well as specific (auto)antibodies. Patients are treated according to their individual needs, adhering to the current standard of care. PoCoRe’s overall aim is to optimize diagnostics and therapy in PCS patients.
Microglia are the resident immune cells of the central nervous system (CNS) and play a major role in the regulation of brain homeostasis. To maintain their cellular protein homeostasis, microglia express standard proteasomes and immunoproteasomes (IP), a proteasome isoform that preserves protein homeostasis also in non-immune cells under challenging conditions. The impact of IP on microglia function in innate immunity of the CNS is however not well described. Here, we establish that IP impairment leads to proteotoxic stress and triggers the unfolded and integrated stress responses in mouse and human microglia models. Using proteomic analysis, we demonstrate that IP deficiency in microglia results in profound alterations of the ubiquitin-modified proteome among which proteins involved in the regulation of stress and immune responses. In line with this, molecular analysis revealed chronic activation of NF-κB signaling in IP-deficient microglia without further stimulus. In addition, we show that IP impairment alters microglial function based on markers for phagocytosis and motility. At the molecular level IP impairment activates interferon signaling promoted by the activation of the cytosolic stress response protein kinase R. The presented data highlight the importance of IP function for the proteostatic potential as well as for precision proteolysis to control stress and immune signaling in microglia function.
Genetic variants in α-actinin-2 (ACTN2) are associated with several forms of (cardio)myopathy. We previously reported a heterozygous missense (c.740C>T) ACTN2 gene variant, associated with hypertrophic cardiomyopathy, and characterized by an electro-mechanical phenotype in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Here, we created with CRISPR/Cas9 genetic tools two heterozygous functional knock-out hiPSC lines with a second wild-type (ACTN2wt) and missense ACTN2 (ACTN2mut) allele, respectively. We evaluated their impact on cardiomyocyte structure and function, using a combination of different technologies, including immunofluorescence and live cell imaging, RNA-seq, and mass spectrometry. This study showed that ACTN2mut presents a higher percentage of multinucleation, protein aggregation, hypertrophy, myofibrillar disarray, and activation of both the ubiquitin-proteasome system and the autophagy-lysosomal pathway as compared to ACTN2wt in 2D-cultured hiPSC-CMs. Furthermore, the expression of ACTN2mut was associated with a marked reduction of sarcomere-associated protein levels in 2D-cultured hiPSC-CMs and force impairment in engineered heart tissues. In conclusion, our study highlights the activation of proteolytic systems in ACTN2mut hiPSC-CMs likely to cope with ACTN2 aggregation and therefore directs towards proteopathy as an additional cellular pathology caused by this ACTN2 variant, which may contribute to human ACTN2-associated cardiomyopathies.
The classical secretory renin-a is known to be involved in angiotensin generation, thereby regulating not only blood pressure, but also promoting oxidative stress as well as apoptotic and necrotic cell death. In contrast, another cytosolic renin isoform named renin-b has been described, exerting protective effects under ischemia-related conditions in H9c2 cardiomyoblasts. Using microarray-based transcriptome analyses, we aimed to identify the signaling pathways involved in mediating cardioprotection in H9c2 cells overexpressing renin-b. By transcriptome profiling, we identified increased gene expression of several genes encoding glycolytic enzymes and glucose transporters, while the transcript levels of TCA-cycle enzymes were decreased. Complementing data from metabolic analyses revealed enhanced glucose consumption and lactate accumulation due to renin-b overexpression. Renin-b overexpression further stimulated AKT/mTOR signaling, where numerous genes involved in this pathway showed altered transcript levels. For AKT, we also detected enhanced phosphorylation levels by means of Western blotting, suggesting an activation of this kinase. Moreover, analysis of the ROS levels identified an increase in ROS accumulation in renin-b-overexpressing cells. Altogether, our data demonstrate that renin-b overexpression induces the metabolic remodeling of H9c2 cells similar to that seen under oxygen deprivation. This metabolic phenotype exerting so-called aerobic glycolysis is also known as the Warburg effect.
APOE ε4 in Depression-Associated Memory Impairment—Evidence from Genetic and MicroRNA Analyses
(2022)
(1) Background: The aim of this study was to replicate a reported interaction between APOE ε4 status and depression on memory function in two independent, nondemented samples from the general population and to examine the potential role of circulating plasma miRNAs. (2) Methods: The impact of the APOE ε4 allele on verbal memory and the interaction with depression is investigated in two large general-population cohorts from the Study of Health in Pomerania (SHIP, total n = 6286). Additionally, biological insights are gained by examining the potential role of circulating plasma miRNAs as potential epigenetic regulators. Analyses are performed using linear regression models adjusted for relevant biological and environmental covariates. (3) Results: Current depression as well as carrying the APOE ε4 allele were associated with impaired memory performance, with increasing effect for subjects with both risk factors. In a subcohort with available miRNA data subjects with current depressive symptoms and carrying APOE e4 revealed reduced levels of hsa-miR-107, a prominent risk marker for early Alzheimer’s Disease. (4) Conclusions: Our results confirm the effect of depressive symptoms and APOE ε4 status on memory performance. Additionally, miRNA analysis identified hsa-miR-107 as a possible biological link between APOE ε4, depressive symptoms, and cognitive impairment.
The thyroid gland is both a thyroid hormone (TH) generating as well as a TH responsive
organ. It is hence crucial that cathepsin-mediated proteolytic cleavage of the precursor thyroglobulin
is regulated and integrated with the subsequent export of TH into the blood circulation, which is
enabled by TH transporters such as monocarboxylate transporters Mct8 and Mct10. Previously, we
showed that cathepsin K-deficient mice exhibit the phenomenon of functional compensation through
cathepsin L upregulation, which is independent of the canonical hypothalamus-pituitary-thyroid axis,
thus, due to auto-regulation. Since these animals also feature enhanced Mct8 expression, we aimed
to understand if TH transporters are part of the thyroid auto-regulatory mechanisms. Therefore,
we analyzed phenotypic differences in thyroid function arising from combined cathepsin K and
TH transporter deficiencies, i.e., in Ctsk-/-/Mct10-/-
, Ctsk-/-/Mct8-/y, and Ctsk-/-/Mct8-/y/Mct10-/-
.
Despite the impaired TH export, thyroglobulin degradation was enhanced in the mice lacking Mct8,
particularly in the triple-deficient genotype, due to increased cathepsin amounts and enhanced cysteine peptidase activities, leading to ongoing thyroglobulin proteolysis for TH liberation, eventually
causing self-thyrotoxic thyroid states. The increased cathepsin amounts were a consequence of
autophagy-mediated lysosomal biogenesis that is possibly triggered due to the stress accompanying
intrathyroidal TH accumulation, in particular in the Ctsk-/-/Mct8-/y/Mct10-/- animals. Collectively,
our data points to the notion that the absence of cathepsin K and Mct8 leads to excessive thyroglobulin
degradation and TH liberation in a non-classical pathway of thyroid auto-regulation.
With more than 25 million people affected, heart failure (HF) is a global threat. As energy
production pathways are known to play a pivotal role in HF, we sought here to identify key metabolic
changes in ischemic- and non-ischemic HF by using a multi-OMICS approach. Serum metabolites and
mRNAseq and epigenetic DNA methylation profiles were analyzed from blood and left ventricular
heart biopsy specimens of the same individuals. In total we collected serum from n = 82 patients
with Dilated Cardiomyopathy (DCM) and n = 51 controls in the screening stage. We identified
several metabolites involved in glycolysis and citric acid cycle to be elevated up to 5.7-fold in DCM
(p = 1.7 × 10−6
). Interestingly, cardiac mRNA and epigenetic changes of genes encoding rate-limiting
enzymes of these pathways could also be found and validated in our second stage of metabolite
assessment in n = 52 DCM, n = 39 ischemic HF and n = 57 controls. In conclusion, we identified a
new set of metabolomic biomarkers for HF. We were able to identify underlying biological cascades
that potentially represent suitable intervention targets.
Extracellular vesicles (EVs) are reminiscent of their cell of origin and thus represent a
valuable source of biomarkers. However, for EVs to be used as biomarkers in clinical practice, simple,
comparable, and reproducible analytical methods must be applied. Although progress is being
made in EV separation methods for human biofluids, the implementation of EV assays for clinical
diagnosis and common guidelines are still lacking. We conducted a comprehensive analysis of
established EV separation techniques from human serum and plasma, including ultracentrifugation
and size exclusion chromatography (SEC), followed by concentration using (a) ultracentrifugation,
(b) ultrafiltration, or (c) precipitation, and immunoaffinity isolation. We analyzed the size, number,
protein, and miRNA content of the obtained EVs and assessed the functional delivery of EV cargo.
Our results demonstrate that all methods led to an adequate yield of small EVs. While no significant
difference in miRNA content was observed for the different separation methods, ultracentrifugation
was best for subsequent flow cytometry analysis. Immunoaffinity isolation is not suitable for
subsequent protein analyses. SEC + ultracentrifugation showed the best functional delivery of
EV cargo. In summary, combining SEC with ultracentrifugation gives the highest yield of pure
and functional EVs and allows reliable analysis of both protein and miRNA contents. We propose
this combination as the preferred EV isolation method for biomarker studies from human serum
or plasma.
Fibroblasts contribute to approximately 20% of the non-cardiomyocytic cells in the heart. They play important roles in the myocardial adaption to stretch, inflammation, and other pathophysiological conditions. Fibroblasts are a major source of extracellular matrix (ECM) proteins whose production is regulated by cytokines, such as TNF-α or TGF-β. The resulting myocardial fibrosis is a hallmark of pathological remodeling in dilated cardiomyopathy (DCM). Therefore, in the present study, the secretome and corresponding transcriptome of human cardiac fibroblasts from patients with DCM was investigated under normal conditions and after TNF-α or TGF-β stimulation. Secreted proteins were quantified via mass spectrometry and expression of genes coding for secreted proteins was analyzed via Affymetrix Transcriptome Profiling. Thus, we provide comprehensive proteome and transcriptome data on the human cardiac fibroblast’s secretome. In the secretome of quiescent fibroblasts, 58% of the protein amount belonged to the ECM fraction. Interestingly, cytokines were responsible for 5% of the total protein amount in the secretome and up to 10% in the corresponding transcriptome. Furthermore, cytokine gene expression and secretion were upregulated upon TNF-α stimulation, while collagen secretion levels were elevated after TGF-β treatment. These results suggest that myocardial fibroblasts contribute to pro-fibrotic and to inflammatory processes in response to extracellular stimuli.
Chronic kidney disease (CKD) is a major public health burden affecting more than 500 million people worldwide. Podocytopathies are the main cause for the majority of CKD cases due to pathogenic morphological as well as molecular biological alterations of postmitotic podocytes. Podocyte de-differentiation is associated with foot process effacement subsequently leading to proteinuria. Since currently no curative drugs are available, high throughput screening methods using a small number of animals are a promising and essential tool to identify potential drugs against CKD in the near future. Our study presents the implementation of the already established mouse GlomAssay as a semi-automated high-throughput screening method—shGlomAssay—allowing the analysis of several hundreds of FDA-verified compounds in combination with downstream pathway analysis like transcriptomic and proteomic analyses from the same samples, using a small number of animals. In an initial prescreening we have identified vitamin D3 and its analog calcipotriol to be protective on podocytes. Furthermore, by using RT-qPCR, Western blot, and RNA sequencing, we found that mRNA and protein expression of nephrin, the vitamin D receptor and specific podocyte markers were significantly up-regulated due to vitamin D3- and calcipotriol-treatment. In contrast, kidney injury markers were significantly down-regulated. Additionally, we found that vitamin D3 and calcipotriol have had neither influence on the expression of the miR-21 and miR-30a nor on miR-125a/b, a miRNA described to regulate the vitamin D receptor. In summary, we advanced the established mouse GlomAssay to a semi-automated high-throughput assay and combined it with downstream analysis techniques by using only a minimum number of animals. Hereby, we identified the vitamin D signaling pathway as podocyte protective and to be counteracting their de-differentiation.