Refine
Year of publication
Document Type
- Article (42)
Language
- English (42)
Has Fulltext
- yes (42)
Is part of the Bibliography
- no (42)
Keywords
- - (37)
- magnetic resonance imaging (3)
- metabolomics (3)
- periodontitis (3)
- Brain-derived neurotrophic factor (2)
- Depression (2)
- Epidemiology (2)
- Iodine (2)
- Obesity (2)
- Thyroid (2)
Institute
- Institut für Community Medicine (14)
- Klinik für Psychiatrie und Psychotherapie (8)
- Klinik und Poliklinik für Innere Medizin (8)
- Institut für Klinische Chemie und Laboratoriumsmedizin (5)
- Institut für Diagnostische Radiologie (2)
- Klinik und Poliklinik für Augenheilkunde (2)
- Klinik und Poliklinik für Mund-, Kiefer- und Gesichtschirurgie/Plastische Operationen (2)
- Poliklinik für Zahnerhaltung, Parodontologie und Endodontologie (2)
- Institut für Biometrie und Medizinische Informatik (1)
- Institut für Chemie und Biochemie (1)
Publisher
- S. Karger AG (10)
- MDPI (8)
- Frontiers Media S.A. (6)
- SAGE Publications (4)
- Public Library of Science (PLoS) (3)
- Wiley (2)
- BioMed Central (BMC) (1)
- Blackwell Publishing Ltd (1)
- British Medical Journal Publishing Group (1)
- John Wiley & Sons, Inc. (1)
Background: Depression and obesity are widespread and closely linked. Brain-derived neurotrophic factor (BDNF) and vitamin D are both assumed to be associated with depression and obesity. Little is known about the interplay between vitamin D and BDNF. We explored the putative associations and interactions between serum BDNF and vitamin D levels with depressive symptoms and abdominal obesity in a large population-based cohort. Methods: Data were obtained from the population-based Study of Health in Pomerania (SHIP)-Trend (n = 3,926). The associations of serum BDNF and vitamin D levels with depressive symptoms (measured using the Patient Health Questionnaire) were assessed with binary and multinomial logistic regression models. The associations of serum BDNF and vitamin D levels with obesity (measured by the waist-to-hip ratio [WHR]) were assessed with binary logistic and linear regression models with restricted cubic splines. Results: Logistic regression models revealed inverse associations of vitamin D with depression (OR = 0.966; 95% CI 0.951–0.981) and obesity (OR = 0.976; 95% CI 0.967–0.985). No linear association of serum BDNF with depression or obesity was found. However, linear regression models revealed a U-shaped association of BDNF with WHR (p < 0.001). Conclusion: Vitamin D was inversely associated with depression and obesity. BDNF was associated with abdominal obesity, but not with depression. At the population level, our results support the relevant roles of vitamin D and BDNF in mental and physical health-related outcomes.
Introduction
Bipolar disorder (BD) is characterized by recurrent episodes of depression and mania and affects up to 2% of the population worldwide. Patients suffering from bipolar disorder have a reduced life expectancy of up to 10 years. The increased mortality might be due to a higher rate of somatic diseases, especially cardiovascular diseases. There is however also evidence for an increased rate of diabetes mellitus in BD, but the reported prevalence rates vary by large.
Material and Methods
85 bipolar disorder patients were recruited in the framework of the BiDi study (Prevalence and clinical features of patients with Bipolar Disorder at High Risk for Type 2 Diabetes (T2D), at prediabetic state and with manifest T2D) in Dresden and Würzburg. T2D and prediabetes were diagnosed measuring HBA1c and an oral glucose tolerance test (oGTT), which at present is the gold standard in diagnosing T2D. The BD sample was compared to an age-, sex- and BMI-matched control population (n = 850) from the Study of Health in Pomerania cohort (SHIP Trend Cohort).
Results
Patients suffering from BD had a T2D prevalence of 7%, which was not significantly different from the control group (6%). Fasting glucose and impaired glucose tolerance were, contrary to our hypothesis, more often pathological in controls than in BD patients. Nondiabetic and diabetic bipolar patients significantly differed in age, BMI, number of depressive episodes, and disease duration.
Discussion
When controlled for BMI, in our study there was no significantly increased rate of T2D in BD. We thus suggest that overweight and obesity might be mediating the association between BD and diabetes. Underlying causes could be shared risk genes, medication effects, and lifestyle factors associated with depressive episodes. As the latter two can be modified, attention should be paid to weight changes in BD by monitoring and taking adequate measures to prevent the alarming loss of life years in BD patients.
Introduction: It has been shown that Alzheimer’s disease (AD) is accompanied by marked structural brain changes that can be detected several years before clinical diagnosis via structural magnetic resonance (MR) imaging. In this study, we developed a structural MR-based biomarker for in vivo detection of AD using a supervised machine learning approach. Based on an individual’s pattern of brain atrophy a continuous AD score is assigned which measures the similarity with brain atrophy patterns seen in clinical cases of AD.
Methods: The underlying statistical model was trained with MR scans of patients and healthy controls from the Alzheimer’s Disease Neuroimaging Initiative (ADNI-1 screening). Validation was performed within ADNI-1 and in an independent patient sample from the Open Access Series of Imaging Studies (OASIS-1). In addition, our analyses included data from a large general population sample of the Study of Health in Pomerania (SHIP-Trend).
Results: Based on the proposed AD score we were able to differentiate patients from healthy controls in ADNI-1 and OASIS-1 with an accuracy of 89% (AUC = 95%) and 87% (AUC = 93%), respectively. Moreover, we found the AD score to be significantly associated with cognitive functioning as assessed by the Mini-Mental State Examination in the OASIS-1 sample after correcting for diagnosis, age, sex, age·sex, and total intracranial volume (Cohen’s f2 = 0.13). Additional analyses showed that the prediction accuracy of AD status based on both the AD score and the MMSE score is significantly higher than when using just one of them. In SHIP-Trend we found the AD score to be weakly but significantly associated with a test of verbal memory consisting of an immediate and a delayed word list recall (again after correcting for age, sex, age·sex, and total intracranial volume, Cohen’s f2 = 0.009). This association was mainly driven by the immediate recall performance.
Discussion: In summary, our proposed biomarker well differentiated between patients and healthy controls in an independent test sample. It was associated with measures of cognitive functioning both in a patient sample and a general population sample. Our approach might be useful for defining robust MR-based biomarkers for other neurodegenerative diseases, too.
Periodontitis is one of the most prevalent oral diseases worldwide and is caused by multifactorial interactions between host and oral bacteria. Altered cellular metabolism of host and microbes releases a number of intermediary end products known as metabolites. There is an increasing interest in identifying metabolites from oral fluids such as saliva to widen the understanding of the complex pathogenesis of periodontitis. It is believed that some metabolites might serve as indicators toward early detection and screening of periodontitis and perhaps even for monitoring its prognosis in the future. Because contemporary periodontal screening methods are deficient, there is an urgent need for novel approaches in periodontal screening procedures. To this end, we associated oral parameters (clinical attachment level, periodontal probing depth, supragingival plaque, supragingival calculus, number of missing teeth, and removable denture) with a large set of salivary metabolites (n = 284) obtained by mass spectrometry among a subsample (n = 909) of nondiabetic participants from the Study of Health in Pomerania (SHIP-Trend-0). Linear regression analyses were performed in age-stratified groups and adjusted for potential confounders. A multifaceted image of associated metabolites (n = 107) was revealed with considerable differences according to age groups. In the young (20 to 39 y) and middle-aged (40 to 59 y) groups, metabolites were predominantly associated with periodontal variables, whereas among the older subjects (≥60 y), tooth loss was strongly associated with metabolite levels. Metabolites associated with periodontal variables were clearly linked to tissue destruction, host defense mechanisms, and bacterial metabolism. Across all age groups, the bacterial metabolite phenylacetate was significantly associated with periodontal variables. Our results revealed alterations of the salivary metabolome in association with age and oral health status. Among our comprehensive panel of metabolites, periodontitis was significantly associated with the bacterial metabolite phenylacetate, a promising substance for further biomarker research.
The aim of the present study was to construct a biological age score reflecting one’s physiologic capability and aging condition with respect to tooth loss over 10 y. From the follow-up to the population-based Study of Health in Pomerania (i.e., SHIP-2), 2,049 participants were studied for their baseline biomarker measures 10 y before (i.e., in SHIP-0). Metabolic and periodontal data were regressed onto chronological age to construct a score designated as “biological age.” For either sex separately, the impact of this individualized score was used to predict tooth loss in the follow-up cohort in comparison with each participant’s chronological age. Outcome data after 10 y with respect to tooth loss, periodontitis, obesity, and inflammation were shown to be better for biologically younger subjects than as expected by their chronological age, whereas for the older subjects, data were worse. Especially for tooth loss, a striking increase was observed in subjects whose biological age at baseline appeared to be higher than their chronological age. Biological age produced significantly better tooth loss predictions than chronological age (P < 0.001). Areas under receiver operating characteristic curves for tooth loss of ≥3 teeth in men during follow-up were 0.811 and 0.745 for biological and chronological age, respectively. For women, these figures were 0.788 and 0.724. For total tooth loss, areas under the curve were 0.890 and 0.749 in men and 0.872 and 0.752 in women. Biological age combines various measures into a single score and allows identifying individuals at increased risk of tooth loss.