Refine
Year of publication
- 2011 (2)
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- - (2)
- Bacteria (1)
- Fungi (1)
- Hair follicle (1)
- In vivo laser scanning microscopy (1)
- Skin barrier (1)
- Stratum corneum (1)
- Suction blister technique (1)
- Transepidermal water loss (1)
- Wound (1)
Institute
Publisher
- S. Karger AG (2)
The exact qualitative and quantitative analysis of wound healing processes is a decisive prerequisite for optimizing wound care and for therapy control. Transepidermal water loss (TEWL) measurements are considered to be the standard procedure for assessing the progress of epidermal wound healing. The damage to the stratum corneum correlates with an increased loss of water through the skin barrier. This method is highly susceptible to failure by environmental factors, in particular by temperature and moisture. This study was aimed at comparing TEWL measurements and in vivo laser scanning microscopy (LSM) for the characterization of the epidermal wound healing process. LSM is a high-resolution in vivo method permitting to analyze the kinetics and dynamics of wound healing at a cellular level. While the TEWL values for the individual volunteers showed a wide scattering, LSM permitted the wound healing process to be clearly characterized at the cellular level. However, a comparison between the two methods was very difficult, because the results provided by LSM were images and not numerical. Therefore, a scoring system was set up which evaluates the stages of wound healing. Thus, the healing process could be numerically described. This method is independent of any environmental factors. Providing morphologically qualitative and numerically quantitative analyses of the wound healing process and being far less vulnerable to failure, LSM is advantageous over TEWL.
Wound healing disorders frequently occur due to biofilm formation on wound surfaces requiring conscientious wound hygiene. Often, the application of conventional liquid antiseptics is not sufficient and sustainable as (1) the borders and the surrounding of chronic wounds frequently consist of sclerotic skin, impeding an effectual penetration of these products, and (2) the hair follicles representing the reservoir for bacterial recolonization of skin surfaces are not affected. Recently, it has been reported that tissue-tolerable plasma (TTP), which is used at a temperature range between 35 and 45°C, likewise has disinfecting properties. In the present study, the effectivity of TTP and a standard liquid antiseptic was compared in vitro on porcine skin. The results revealed that TTP was able to reduce the bacterial load by 94%, although the application of the liquid antiseptic remained superior as it reduced the bacteria by almost 99%. For in vivo application, however, TTP offers several advantages. On the one hand, TTP enables the treatment of sclerotic skin as well, and on the other hand, a sustainable disinfection can be realized as, obviously, also the follicular reservoir is affected by TTP.