Refine
Document Type
- Article (4)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- - (2)
- Cell mechanics (1)
- HEK cells (1)
- HIT (1)
- Microenvironment (1)
- Nanoindentation (1)
- PF4 (1)
- atomic force microscopy (1)
- binding force (1)
- cell elasticity (1)
Institute
Publisher
- MDPI (1)
- Tech Science Press (1)
- Wiley (1)
For the last two decades, heparins have been widely used as anticoagulants. Besides
numerous advantages, up to 5% patients with heparin administration suffer from a major adverse
drug effect known as heparin-induced thrombocytopenia (HIT). This typical HIT can result in deep
vein thrombosis, pulmonary embolism, occlusion of a limb artery, acute myocardial infarct, stroke, and
a systemic reaction or skin necrosis. The basis of HIT may lead to clinical insights. Recent studies using
single-molecule force spectroscopy (SMFS)-based atomic force microscopy revealed detailed binding
mechanisms of the interactions between platelet factor 4 (PF4) and heparins of different lengths in
typical HIT. Especially, SMFS results allowed identifying a new mechanism of the autoimmune HIT
caused by a subset of human-derived antibodies in patients without heparin exposure. The findings
proved that not only heparin but also a subset of antibodies induce thrombocytopenia. In this review,
the role of SMFS in unraveling a major adverse drug effect and insights into molecular mechanisms
inducing thrombocytopenia by both heparins and antibodies will be discussed.
Direct monitoring of drug‐induced mechanical response of individual cells by atomic force microscopy
(2020)
Abstract
Mechanical characteristics of individual cells play a vital role in many biological processes and are considered as indicators of the cells’ states. Disturbances including methyl‐β‐cyclodextrin (MβCD) and cytochalasin D (cytoD) are known to significantly affect the state of cells, but little is known about the real‐time response of single cells to these drugs in their physiological condition. Here, nanoindentation‐based atomic force microscopy (AFM) was used to measure the elasticity of human embryonic kidney cells in the presence and absence of these pharmaceuticals. The results showed that depletion of cholesterol in the plasma membrane with MβCD resulted in cell stiffening whereas depolymerization of the actin cytoskeleton by cytoD resulted in cell softening. Using AFM for real‐time measurements, we observed that cells mechanically responded right after these drugs were added. In more detail, the cell´s elasticity suddenly increased with increasing instability upon cholesterol extraction while it is rapidly decreased without changing cellular stability upon depolymerizing actin cytoskeleton. These results demonstrated that actin cytoskeleton and cholesterol contributed differently to the cell mechanical characteristics.
Little is known about mechanics underlying the interaction among platelets during activation and aggregation. Although the strength of a blood thrombus has likely major biological importance, no
previous study has measured directly the adhesion forces of single platelet-platelet interaction at different activation states. Here, we filled this void first, by minimizing surface mediated plateletactivation and second, by generating a strong adhesion force between a single platelet and an AFM cantilever, preventing early platelet detachment. We applied our setup to measure rupture forces between two platelets using different platelet activation states, and blockade of platelet receptors. The rupture force was found to increase proportionally to the degree of platelet activation, but reduced with blockade of specific platelet receptors. Quantification of single platelet-platelet interaction provides major perspectives for testing and improving biocompatibility of new materials; quantifying the effect of drugs on platelet function; and assessing the mechanical characteristics of acquired/inherited platelet
defects.
Microenvironment contains biophysical and biochemical elements to maintain survival, growth, proliferation, and differentiation of cells. Any change can lead to cell response to the mechanical forces, which can be described by elasticity. It is an indicator of a cell’s state since it plays an important role in many cellular processes. In many cases, cell elasticity is measured by using discontinuous manner, which may not allow elucidating real-time activity of individual live cells in physiological condition or cell response against microenvironmental changes. I argue that measuring cell elasticity using continuously repetitive nanoindentation technique is important that should be considered. As an example, I discuss mechanics of human embryonic kidney (HEK) cells in various conditions. In resting cells, there is an activity of the cytoskeleton whose oscillation amplitude is strongly affected by the intracellular calcium, and the collective activity of myosin motor proteins induces elasticity oscillation. Experimental results also reveal that actin cytoskeleton and cell membrane determine cell mechanics.