Refine
Document Type
- Article (3)
- Doctoral Thesis (1)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- - (3)
- BDNF (1)
- Herzinsuffizienz (1)
- Renin-Angiotensin-Aldosteron System (1)
- Sekretom (1)
- Vorläuferzelle (1)
- Zellmigration (1)
- angiogenesis (1)
- autophagy-lysosomal pathway (1)
- bioassay-guided fractionation (1)
Institute
Publisher
- Frontiers Media S.A. (2)
- MDPI (1)
Extracts from the leaves and flowers of Crataegus spp. (i.e., hawthorn species) have been traditionally used with documented preclinical and clinical activities in cardiovascular medicine. Based on reported positive effects on heart muscle after ischemic injury and the overall cardioprotective profile, the present study addressed potential contributions of Crataegus extracts to cardiopoietic differentiation from stem cells. The quantified Crataegus extract WS®1442 stimulated cardiomyogenesis from murine and human embryonic stem cells (ESCs). Mechanistically, this effect was found to be induced by promoting differentiation of cardiovascular progenitor cell populations but not by proliferation. Bioassay-guided fractionation, phytochemical and analytical profiling suggested high-molecular weight ingredients as the active principle with at least part of the activity due to oligomeric procyanidines (OPCs) with a degree of polymerization between 3 and 6 (DP3–6). Transcriptome profiling in mESCs suggested two main, plausible mechanisms: These were early, stress-associated cellular events along with the modulation of distinct developmental pathways, including the upregulation of brain-derived neurotrophic factor (BDNF) and retinoic acid as well as the inhibition of transforming growth factor β/bone morphogenetic protein (TGFβ/BMP) and fibroblast growth factor (FGF) signaling. In addition, WS®1442 stimulated angiogenesis ex vivo in Sca-1+ progenitor cells from adult mice hearts. These in vitro data provide evidence for a differentiation promoting activity of WS®1442 on distinct cardiovascular stem/progenitor cells that could be valuable for therapeutic heart regeneration after myocardial infarction. However, the in vivo relevance of this new pharmacological activity of Crataegus spp. remains to be investigated and active ingredients from bioactive fractions will have to be further characterized.
Herzinsuffizienz ist eine der häufigsten Ursachen für Morbidität und Mortalität weltweit. Zum jetzigen Zeitpunkt ist die Herztransplantation im fortgeschrittenen Stadium der Erkrankung der einzige kurative Therapieansatz. Durch den Einsatz von Stammzellen als Therapieoption der Herzinsuffizienz konnten in den letzten Jahren im Rahmen von tierexperimentellen und klinischen Studien zahlreiche vielversprechende Daten gewonnen werden. Ziel der Stammzelltransplantationen ist es, das geschädigte Gewebe zu ersetzen, die Gefäßneubildung zu induzieren und somit die kardiale Funktion aufrechtzuerhalten. Kardialen Stammzellen wird durch die Fähigkeit der Selbsterneuerung, Proliferation und der Differenzierung in spezialisierte Zelltypen ein großes Regenerationspotential zugeschrieben. Weiterhin wurde ein positiver Einfluss von kardialen Stammzellen auf die Gefäßneubildung mittels parakriner Effekte beschrieben. Obwohl durch die Transplantation von kardialen Stammzellen eine Regeneration des geschädigten Gewebes, z.B. nach einem Myokardinfarkt, beobachtet wurde, ist noch wenig über die genauen Wirkungsweisen der eingesetzten Stammzellen bekannt. Zudem bleibt unklar, welchen Einfluss eine Schädigung des Herzens auf die Stammzellen und ihre Funktion hat und welche Faktoren dabei eine Rolle spielen. Die Existenz von residenten kardialen Stammzellen konnte sowohl im tierischen als auch im humanen Herzen nachgewiesen werden. Jedoch ist bis heute nicht geklärt, warum der Pool an residenten kardialen Progenitorzellen nicht merklich zur Regeneration nach einer Schädigung beitragen kann. Die vorliegende Arbeit befasste sich daher mit der Untersuchung der Funktion muriner residenter kardialer Progenitorzellen, die positiv für das Stammzellantigen-1 (Sca-1) sind, unter physiologischen und pathophysiologischen Bedingungen. Hierfür wurde der Einfluss des Renin-Angiotensin-Aldosteron Systems (RAAS), welches entscheidend an der Entwicklung einer Herzinsuffizienz beteiligt ist, auf die Funktion Sca-1 positiver Zellen in vitro untersucht. Anschließend wurde der Einfluss pathophysiologischer Aldosteronkonzentrationen, wie sie im Rahmen einer Herzinsuffizienz nachweisbar sind, auf die sekretorische Aktivität der Sca-1 positiven Zellen bestimmt. Im Rahmen dieser Arbeit konnte erstmals gezeigt werden, dass die Komponenten des RAAS die Migrationsrate Sca-1 positiver Zellen dosis- und zeitabhängig beeinflussen, wobei vor allem pathophysiologische Konzentrationen von Aldosteron eine signifikante Steigerung der Migrationsrate der Sca-1 positiven Zellen bewirkten. Des Weiteren konnte eine Mineralokortikoidrezeptor-vermittelte Wirkungsweise des Aldosterons auf die Funktion der Sca-1 positiven Zellen festgestellt werden, welche durch den Einsatz der Aldosteron-Antagonisten Spironolakton und Eplerenon inhibiert wurde. Anhand der an Sca-1 positiven Zellen durchgeführten Sekretomanalysen konnte gezeigt werden, dass sich die sekretorische Aktivität kardialer Progenitorzellen unter physiologischen und pathophysiologischen Bedingungen unterscheidet. Pathophysiologische Stimuli führen zu einer erhöhten sekretorischen Aktivität kardialer Progenitorzellen. Die Analyse der sekretierten löslichen Faktoren deutet auf eine Beteiligung Sca-1 positiver Zellen an Reparatur- und Regenerationsprozessen mittels parakriner Mechanismen nach einer Schädigung hin. Die vorliegenden Ergebnisse zeigen, dass mit dem Mineralokortikoid Aldosteron ein Faktor identifiziert wurde, welcher zur Optimierung der Stammzelltherapie, z.B. im Rahmen einer Herzinsuffizienz, dienen kann. Weiterhin konnte in dieser Arbeit das Verhalten und die Funktion kardialer Progenitorzellen unter pathophysiologischen Bedingungen näher charakterisiert werden und mögliche Mechanismen aufgezeigt werden, über welche kardiale Stammzellen an Regenerationsprozessen beteiligt sein können.
The ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway (ALP) are the main proteolytic systems involved in cellular homeostasis. Since cardiomyocytes, as terminally differentiated cells, lack the ability to share damaged proteins with their daughter cells, they are especially reliant on these protein degradation systems for their proper function. Alterations of the UPS and ALP have been reported in a wide range of cardiac diseases, including cardiomyopathies. In this study, we determined whether the UPS and ALP are altered in a mouse model of eccentric left ventricular (LV) hypertrophy expressing both cyclin T1 and Gαq under the control of the cardiac-specific α-myosin heavy chain promoter (double transgenic; DTG). Compared to wild-type (WT) littermates, DTG mice showed higher end-diastolic (ED) LV wall thicknesses and diameter with preserved ejection fraction (EF). The cardiomyopathic phenotype was further confirmed by an upregulation of the fetal gene program and genes associated with fibrosis as well as a downregulation of genes involved in Ca2+ handling. Likewise, higher NT-proBNP levels were detected in DTG mice. Investigation of the UPS showed elevated steady-state levels of (poly)ubiquitinated proteins without alterations of all proteasomal activities in DTG mice. Evaluation of ALP key marker revealed a mixed pattern with higher protein levels of microtubule-associated protein 1 light chain 3 beta (LC3)-I and lysosomal-associated membrane protein-2, lower protein levels of beclin-1 and FYVE and coiled-coil domain-containing protein 1 (FYCO1) and unchanged protein levels of p62/SQSTM1 in DTG mice when compared to WT. At transcriptional level, a > 1.2-fold expression was observed for Erbb2, Hdac6, Lamp2, Nrg1, and Sqstm1, while a < 0.8-fold expression was revealed for Fyco1 in DTG mice. The results related to the ALP suggested overall a repression of the ALP during the initiation process, but an induction of the ALP at the level of autophagosome-lysosome fusion and the delivery of ubiquitinated cargo to the ALP for degradation.