Refine
Document Type
- Doctoral Thesis (4)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- Scots pine (2)
- climate change (2)
- dendrochronology (2)
- wood anatomy (2)
- Annual rings (1)
- Baltic Sea (1)
- Climate Change (1)
- Dendrochronologie , Moor , Kiefer <Gattung> (1)
- Dünen (1)
- Ecosystem Dynamics (1)
Tree growth in northern and upper treeline ecotones of the circumpolar boreal forest is
generally limited by temperature, i.e., trees grow generally more under warm, and less under
cold climatic conditions. Based on the assumption that this relationship between tree growth
and climate is linear and stable through time, dendroclimatologists use tree rings as natural
archives to reconstruct past temperature conditions. Such tree-ring based reconstructions,
together with other natural archives (e.g., ice cores and pollen), constitute our understanding of
past climatic conditions that reach beyond modern instrumental records.
However, a steadily increasing amount of studies reports a recent reduction or loss of the
summer temperature signal for several species and sites of the boreal forest. Such a reduction
of temperature sensitivity results in temporally unstable climate-tree growth relationships,
which challenges the work of dendroclimatologists by potentially leading to miscalibrations of
past climatic conditions. On the upside, this shift in the trees’ climate sensitivity might point to
a shift in tree growth-limiting factors and thus serve as an early indicator of climate change
impacts. There is evidence that this recent reduction in temperature sensitivity might be caused
by the observed strong temperature increase at high latitudes, and thus temperature-induced
drought stress. Other potential drivers and amplifiers of this phenomenon are differing microsite
conditions (dry vs. wet soils) and factors inherent to trees, like genetic properties or age
effects.
In this PhD thesis, I systematically assessed the effects of frequently discussed drivers of
unstable climate-tree growth relationships (climate change, micro-site effects, genetical
predisposition) on two representative species of the boreal forest, white spruce in North
America and Scots pine in Eurasia, across various temporal and spatial scales. I used classical
(tree-ring width) and more novel (wood density, quantitative wood anatomy)
dendrochronological proxies to unravel the effects from annual to sub-monthly resolution.
More precisely, in chapter I, white spruce clones were compared to non-clones at two treeline
sites in Alaska to test whether their growth patterns differ, and whether white spruce clones are
generally suitable for dendroclimatic assessments. Clonal reproduction is frequent at treeline
due to harsh conditions, but might lead to competition among individuals due to the close
proximity among each other, which in turn might obscure their climatic signal. Second, I tested
the effect of warmer and drier climatic conditions on the summer temperature signal of Scots
pine in Eurasia (chapter II) and on the growing season moisture signal of white spruce in North
America (chapter III), respectively. Temperature-induced drought stress is expected to be the
most important driver of unstable climate-growth relationships in the boreal forest. I included
several sites across latitudinal (50-150 km) and longitudinal (1,000-2,200 km) gradients to
cover large parts of the species’ distribution ranges. Since Scots pine covers a wide range of
ecological habitats, I additionally tested the effect of dry and wet micro-site conditions on the
summer temperature signal of Scots pine in chapter II. Finally, in chapter IV, a systematic
literature review was carried out in order to investigate the distribution of unstable climategrowth
relationships in global tree-ring studies, and the usage of such series in climate
reconstructions. Furthermore, the scientific impact of these potentially inaccurate climate
reconstructions was assessed.
In this PhD project, warmer and drier climatic conditions led to temporally unstable climate
signals in both Scots pine (chapter II) and white spruce (chapter III), as expected. Unstable
climate-growth relationships were found for all tested tree-ring proxies and at all sites in North
America, and at most sites in Eurasia. Micro-site effects (chapter II) and clonal growth
(chapter I) had no significant effect on the climate sensitivity and high-frequency variability
of the tested species, but affected absolute growth. The review (chapter IV) revealed that the
phenomenon of unstable climate-growth relationships is globally widespread, and occurs
independent of tree species, geographic location, and tree-ring and climate proxies. While
reconstructions inferred from these unstable relationships are frequent and respective papers
have a high impact, the tree-ring community seems to increasingly recognize the challenge of
unstable climate-growth relationships.
With these findings, this PhD project helped to shed more light on the frequency, underlying
drivers, and the impact of unstable climate-growth relationships in boreal forest trees, as well
as underlying reaction processes in trees. Above all, this PhD project suggests that the loss of
climate sensitivity is caused by a change of growth limiting factors: temperature limitation
seems to be suspended in warmer and drier years for Scots pine in Eurasia, and moisture
limitation first arises under warm/dry conditions for white spruce in North America. Due to
plastic growth responses in trees, the general assumption in dendroclimatology – that climategrowth
relationships are stable through time – seems to be incompatible with the principle of
limiting factors (one factors is always most growth limiting).
To improve the validity of future climate reconstructions, statistical approaches considering
synchronously or changing climatic limiting factors need to be promoted, along with attempts
to select the best responding trees from a dataset. Furthermore, a better understanding of nonclimatic
factors potentially affecting tree growth (e.g., age, disturbance, soil parameters) is
needed. A growth reduction of mature and dominant white spruce trees sampled in this PhD
project seems likely under future warming conditions, with series of wood cells being valuable
early indicators of climate change effects in white spruce. However, inferences cannot be
extended to the entire stand due to the applied sample design. Projected climate warming will
probably lead to a further reduction of the summer temperature signal in trees of the northern
boreal forest, while wider consequences for forest growth and productivity are unclear.
Peatlands are wetland ecosystems covering a relatively small area of the World (~3%), but at the same time storing excessive amounts of carbon for a very long time (equivalent to the four times global annual net primary production). As carbon sinks, peatlands work in spite of their slow growth, absorbing carbon dioxide (CO2) through the photosynthetic activity of the peatland plants and their low growth rates, and because high groundwater table removes oxygen from the soil and slows down the decomposition of the dead plant matter. Because of the relative lack of the oxygen in the peat, especially compared to the mineral soils, methanogen populations in the peatlands are abundant, and releasing methane (CH4), a potent greenhouse gas, to the atmosphere. Therefore, peatlands are generally at the same time significant carbon sinks and stores as well as the methane sources. The balance among the two peatland gass fluxes (CO2 and CH4) will dictate the impact of any given peatland on the global climate and primarily driven by hydrology, in the form of the groundwater table levels.
Because of the slow decomposition rates, and from radiocarbon dating of the peat as well as the subfossil records buried in it, carbon stored in peatlands is locked for a very long time (centuries to millennia). It is, therefore, crucial to gain insights into the development of peatlands and their gas balance through time. One way to get both is by studying peatland hydrology in the form of the groundwater table levels and their historical variations. Unfortunately, intensive monitoring of peatland groundwater table, when available, is an only a recent endeavor. Therefore, we need to employ proxies to reconstruct the past by leveraging the present. In statistics, proxy variables are often used when the observations of the variable of interest, are either missing or too difficult to obtain.
In this thesis, I tested whether we can use the radial growth of the Scots pines growing on peat as proxies to the peatland hydrology. To that end, I studied growth responses of the peatland Scots pines. Other proxies can and are used for the reconstructions of the groundwater table levels, but tree-growth is widely used as one of the proxies to reconstruct past environments which is at the same time annually resolved.
First, I examined the growth ecology of the peatland Scots pines by looking at their intra-annual development and trying to find relationships between it and environmental factors while at the same time comparing it with the Scots pines growing at the forest sites. I first tried with wood anatomy and found that, unfortunately, peatland Scots pines do not form enough wood cells, and consequently do not have high temporal resolution, necessary to investigate the intra-annual patterns of the radial growth. Initial results from wood anatomical investigations were interesting none-the-less, indicating that peatland Scots pines might have smaller cell features than the Scots pines from forests, but might at the same time maintain Early/Latewood ratios of those same features.
After I found that wood anatomical series were not resolved enough I decided to go with dendrometers, linear displacement sensors which constantly monitor the variations of stem radius, to get insights into the intra-annual growth patterns of the peatland Scots pines. Before using dendrometers for ecological investigations, I was involved in implementing routines commonly used in the analysis of the dendrometer signals and bringing them to R in the form of the dendrometeR package.
At one peatland complex, I installed dendrometers on ten trees in total at both peatland and forest sites and compared the pattern of the standardized signal. I inferred from the comparisons and classifications that the signal from two sites was indistinguishable for the dendrometer series shorter than five days. Furthermore, the most important environmental factor driving the radial variation at the peatland site was hydrological, daily relative humidity, indicating further that peatland hydrology might indeed be the driver behind peatland Scots pine growth.
Finally, I looked at the growth responses of peatland Scots pines from central Estonia using dendrochronological methods. Peatland hydrology, in the form of the groundwater table levels, was indeed the environmental factor with the strongest, and also stationary, correlations with the radial growth of the peatland Scots pine. That relationship indicated that peatland Scots pines are indeed possible proxies for reconstructing past levels of the peatland groundwater tables.
My study further indicated that the growth response of the peatland Scots pines was non-linear, further complicating the reconstructions of the past peatland hydrology. However, the strength of the growth response was proportional to the general hydrological regime, expressed as median groundwater table level. As the hydrological regime of the peatland does not vary considerably on the annual scales, but more on decadal it might be more appropriate to find another, independent, proxy to the hydrological regime first, and than use annually resolved radial growth of the peatland Scots pine to reconstruct past levels of the peatland groundwater table.
Forests are ecologically important ecosystems, for example, they absorb CO2 from the
atmosphere, mitigate climate change, and constitute habitats for the majority of terrestrial
flora and fauna. Currently, due to increasing human pressure, forest ecosystems are
increasingly subjected to changing environmental conditions, which may alter forest growth
to varying degrees. However, how exactly different tree species will respond to climate
change remains uncertain and requires further comprehensive studies performed at different
spatial scales and using various tree-ring parameters.
This dissertation aims to advance the knowledge about tree-ring densitometry and
tree responses to climate variability and extremes at different spatial scales, using various
tree species. More specifically, the following aims are pursued: (i) to obtain and compare
wood density data using different techniques, and to assess variability among laboratories
(Chapter I). (ii) To investigate microsite effects on local and regional Scots pine (Pinus
sylvestris L.) responses to climate variability (Chapter II) and extremes (Chapter III),
using ring width (RW) and latewood blue intensity (LBI) parameters. (iii) To give a general
site- and regional-scales overview of Scots pine, pedunculate oak (Quercus robur L.), and
European beach (Fagus sylvatica L.) RW responses to climate variability (Chapter IV). (iv)
To discuss the challenges which may result from compiling tree ring records from different
(micro)sites into large-scale networks. The study area comprises nine coastal dune sites, each
represented by two contrasting microsites: dune ridge and bottom (Chapters II and III), and
310 different sites within the south Baltic Sea lowlands (Chapter IV).
The dissertation confirms that sample processing and wood density measuring are
very important steps, which, if not performed carefully, may result in biases in growth trends,
climate-growth responses, and climate reconstructions. The performed experiment proved
that the mean levels of different wood density-related parameters are never comparable due
to different measurement resolutions between various techniques and laboratories. Further,
the study revealed substantial biases using data measured from rings of varying width due
to resolution issues, where resolution itself and wood density are lowered for narrow rings
compared to wide rings (Chapter I).
The (micro)site-specific investigation showed that, depending on the species,
different climate variables (temperature, precipitation, or drought) constitute important
factors driving tree growth across investigated locations (Chapters II and IV). However,
there is evidence that the strength and/or direction of climate-growth responses differ(s)
between microsite types (Chapter II) and across sites (Chapter IV). Moreover, climategrowth
responses are non-stationary over time regardless of the tree species and tree-ring
parameter used in the analysis (Chapters II and IV). There are also differences in RW and
LBI responses to extreme events at dune ridge and bottom microsites (Chapter III).
The regional-scale investigations revealed that climate-growth responses (strength
and non-stationarity) are quite similar to those observed at the local scale. However,
compiling RW or LBI measurements into regional networks to study tree responses to
extreme events led to weakened signals (Chapter III).
The findings presented in Chapters II and IV suggest that the strength, direction,
and non-stationary responses are very likely caused by several climatic and non-climatic
factors. The mild climate in the south Baltic Sea region presumably does not constitute a
leading limiting growth factor, especially for Scots pine, whose distribution extends from
southern to northern Europe. Thus, the observed climate-growth responses are usually of
weak to moderate strength. In contrast, for other species reaching their distribution limit at
the Baltic coast, the climatic signal can be very strong. However, the observed findings also
result from the effects of microsite conditions, and potentially other factors (e.g.,
management, stand dynamic), which all together alter the physiological response of the tree
at a local scale. Although climate at the south Baltic Sea coast is mild, extreme climate events
may occur and affect tree growth. As demonstrated (Chapter III), extreme climate events
affected tree growth across dune sites, however, to varying degrees. The prominent
differences in tree responses to extreme climate events were significant at the local scale but
averaged out at the regional scale. This is very likely associated with observed microsite
differences, where each microsite experiences different drivers and dynamics of extreme
growth reductions.
This dissertation helped to demonstrate that integrating local tree-ring records into
regional networks involves a series of challenges, which arise at different stages of research.
In fact, not all possible challenges have been discussed in this dissertation. However, it can
be summarized that several steps performed first at the local scale are very important for the
quality and certainty of climate-growth responses, tracking tree recovery after extreme
events, and potential climate reconstructions at the larger scale. Among them, identification
of microsite conditions, sample preparation, and measurement, examination of growth
patterns and trends, and identification of a common limiting growth factor are very
important. Otherwise, the compilation of various tree-ring data into a single dataset could
lead to over- or underestimation of the results and biased interpretations.
Dendrochronology, the science of tree-rings is a tool which has been widely used for many years for understanding changes in the environment, as trees react to environmental changes over time. In the contemporary situation, where climate warming in the Arctic is unequivocal and its effects on the Alpine and tundra ecosystems are seen pronouncedly in the past decade, the role of dendro-studies and the use of trees and shrubs alike as proxies of change has become critical. Studies clearly indicate that warming in the Arctic and Alpine tundra has resulted in increased vegetation in recent years. Shrubs, in these sensitive ecosystems, have proven to be highly instrumental as they likely benefit from this warming and hence are good indicators and auditees of this change. Therefore, in this study, we investigate the potential of shrubs in the evolving field of dendro-ecology/climatology.
Studies from classical dendrochronology used annual rings from trees. Further, because of shrub sensitivity to contemporary change, shrub-based dendrochronological research has increased at a notable scale in the last decade and will likely continue. This is because shrubs grow even beyond the tree line and promise environmental records from areas where tree growth is very limited or absent. However, a common limitation noted by most shrub studies is the very hard cross-dating due to asynchronous growth patterns. This limitation poses a major hurdle in shrub-based dendrochronological studies, as it renders weak detection of common signals in growth patterns in population stands. This common signal is traced by using a ‘site-chronology’.
In this dissertation, I studied shrub growth through various resolutions, starting from understanding radial growth within individuals along the length of the stem, to comparison of radial growth responses among male and female shrubs, to comparing growth responses among trees and shrubs to investigation of biome-wide functional trait responses to current warming. Apart from Chapter 4 and Chapter 6, I largely used Juniperus communis sp. for investigations as it is the most widely distributed woody dioecious species often used in dendro-ecological investigations in the Northern Hemisphere.
Primarily, we investigated radial growth patterns within shrubs to better understand growth within individuals by comparing different stem-disks from different stem heights within individuals. We found significant differences in radial growth from different stem-disks with respect to stem heights from same individuals. Furthermore, we found that these differences depending on the choice of the stem-disk affect the resulting site-chronology and hence climate-sensitivity to a substantial extent and that the choice of a stem-disk is a crucial precursor which affects climate-growth relationships.
Secondly, we investigated if gender difference – often reported causing differential radial growth in dioecious trees – is an influential factor for heterogeneous growth. We found that at least in case of Juniperus communis. L and Juniperus communis ssp nana. WILLD there is no substantial gender biased difference in radial growth which might affect the site-chronology. We did find moderate differences between sexes in an overall analysis and attribute this to reproductive effort in females.
In our study to test the potential of shrubs for reconstruction, we used a test case of Alnus viridis ssp crispa. We found a strong correlation between ring-width indices and summer temperature. Initially, the model failed the stability tests when we tested the stability of this relation using a response function model. However, using wood-anatomical analysis we discovered that this was because of abnormal cell-wall formation resulting in very thin rings in the year 2004. Pointer year analysis revealed that the thin rings were caused because of a moth larval outbreak and when corrected for these rings the model passed all stability tests.
Furthermore, to see if trees and shrubs growing in same biomes react to environmental changes similarly, a network analysis with sites ranging from the Mediterranean biome to the Ural Mountains in Russia was carried out. We found that shrubs react better to the current climate warming and have a decoupled divergent temperature response as compared to coexisting trees. This outcome reiterated the importance of shrub studies in relation to contemporary climate change. Even though trees and shrubs are woody forms producing annual rings, they have very different growth patterns and need different methods for analysis and data treatment.
Finally, in a domain-wide network analysis from plant-community vegetation survey, we investigated functional relationships between plant traits (leaf area, plant height, leaf nitrogen content, specific leaf area (SLA), and leaf dry matter content (LDMC)) and abiotic factors viz. temperature and soil moisture. We found a strong relation between summer temperature and community height, SLA and LDMC on a spatial scale. Contrarily, the temporal-analysis revealed SLA and LDMC lagged and did not respond to temperature over the last decade. We realized that there are complex interactions between intra-specific and inter-specific plant traits which differ spatially and temporally impacting Arctic ecosystems in terms of carbon turn over, surface albedo, water balance and heat-energy fluxes. We found that ecosystem functions in the Arctic are closely linked with plant height and will be indicative of warming in the short term future becoming key factors in modelling ecosystem projections.