Refine
Document Type
- Doctoral Thesis (14)
Has Fulltext
- yes (14)
Is part of the Bibliography
- no (14)
Keywords
- Staphylococcus aureus (5)
- Sepsis (3)
- IgE (2)
- S. aureus (2)
- Airway inflammation (1)
- Allergen (1)
- Allergic diseases (1)
- Allergie (1)
- Allergy (1)
- Alzheimerkrankheit (1)
The study of host-pathogen interactions is central to a better understanding of the human microbiome, infections and the inner workings of immune cells. One focal point of this research is how the human immune system recognises both harmful and harmless antigens, integrates the resulting signals and forms a response, and how, conversely, microbes can manipulate this reaction.
In this thesis, Pseudomonas aeruginosa (P. aeruginosa), a critical pathogen in chronic and nosocomial infections, was in the focus. The aim was to search for bacterial proteins that favour a type 2 immune response, as it is orchestrated by CD4+ type 2 T helper cells (Th2 cells). The humoral arm of a type 2 response is dominated by IgG4 and IgE. Such immune responses are typically directed against multicellular pathogens like helminths and other parasites. However, type 2 immune responses are suboptimal for the defence against extracellular bacteria like P. aeruginosa. Previous research suggests that some bacterial proteins may promote a switch to such an insufficient immune response as a mechanism of immune evasion.
To optimise the sensitivity of the search for type 2 response inducing proteins of P. aeruginosa, cystic fibrosis (CF) patients were studied, as many are exposed to the pathogen in their airways over prolonged time periods. As such, the humoral immune response of 9 CF patients to their own P. aeruginosa strain was examined. For this, the secretomes of 9 clinical P. aeruginosa isolates from CF patients and the P. aeruginosa reference strain PAO-1 were studied by 2D-immunoblotting for their ability to be bound by IgG4 and IgG1 from respective patient sera. IgG4 served as a proxy for IgE, as assays analysing IgE binding suffer from low sensitivity because of low serum concentrations of IgE. Antibody reactive P. aeruginosa proteins were then identified by liquid chromatography tandem mass spectrometry and the results were compared with proteomics data from literature.
In total, 308 distinct protein spots were analysed. These belonged to 17 bacterial proteins, which comprise the entire known P. aeruginosa secretome. Of these spots, 232 were bound by IgG4, and 24 by IgG1 only. Notably proteases like serralysin and P. aeruginosa elastase presented with an IgG4 bias. This is concordant with previous research linking proteases to a type 2 immune response. Moreover, structural proteins like
agellins were also immunodominant. Flagellins are known as common targets of immune detection in bacteria. These proteins also demonstrated a clear IgG4 bias.
Thus, the search for secreted P. aeruginosa proteins that elicit an IgG4-dominated antibody response was successful. It remains to be shown whether these bacterial proteins are also recognized by IgE and Th2 cells, meaning whether they are truly driving a type 2 immune response in CF patients. It is also an open question whether the observed IgG4 bias in the antibody response to the exoproteome of P. aeruginosa is specific to CF or a general feature of the human immune response to the pathogen.
Functional characterization of a novel protease isolated from a mouse-adapted S. aureus strain
(2018)
Background: The high incidence of methicillin-resistant Staphylococcus aureus
(MRSA) strengthens the need for new effective antibiotics and a protective vaccine. Up till now, mainly human-adapted Staphylococcus aureus strains were used to study S. aureus pathogenicity in mouse models. However, it is known that S. aureus is highly host-specific. Recently, a mouse-adapted S. aureus strain, JSNZ, was identified. This strain could be a promising tool in developing more appropriate infection models. JSNZ produces high amounts of a putative extracellular protease, named JSNZ extracellular protease (Jep). Since the jep gene was only detected in S. aureus isolates from laboratory mice and wild small rodents and shrews, we hypothesize that Jep is important for colonization and infection in mice. The jep deletion mutant previously created by our collaborators from the University of Auckland, New Zealand, intriguingly showed a reduced survival and growth fitness in murine serum and whole blood as compared to the JSNZ wild type (WT) strain.
Objective: To elucidate the role of Jep in the interaction between S. aureus and its
host by comparing the impact of JSNZ WT with a mutant and a complement strain on the murine immune system. In addition, the elucidation of possible genetic factors behind host-adaptation of S. aureus strains isolated from wild rodents and shrews.
Methods: A jep complemented strain was generated by chromosomal replacement.
JSNZ WT, the jep mutant and the complement strain were subjected to functional
assays (whole blood survival assay, coagulation assay). In addition, the genetic
background that might confer host specificity was tested by staph array genotyping.
Results: The mutant strain JSNZDjep was successfully complemented with the jep
gene using a chromosomal integration approach. The WT strain and the
complemented strain produced the Jep protein in comparable amounts.
Unexpectedly, the complemented strains did not behave like the WT strain but rather like the mutant in a series of in vitro assays. Firstly, the growth of both the deletion mutant and the complemented strains was slightly reduced in TSB as compared to the WT strain. Secondly, the jep knockout strain showed a strongly reduced survival in murine whole blood compared to its wild type counterpart, but so did the complemented strain. Finally, the coagulation of murine plasma was less pronounced for the jep deletion mutant and the complemented strain as compared to the JSNZ WT. To exclude a defect in jep gene expression, we compared the amount of Jep expressed during growth in TSB medium for the three strains. The complemented strain produced Jep in a manner similar to the WT strain in a growth-phase dependent manner, suggesting that Jep expression was not affected during the creation of the complemented strain.
The array data showed some differences in the genetic makeup between animal
isolated strains and matched human strains. For example, while all animal isolates of the CC88 lacked the resistance mecA gene it was found in some human isolates of the same strain.
Conclusion: In conclusion, our unidentified mutation created during the generation
of the jep knock-out strain rather than the jep gene itself manipulated the murine
immune response. The responsible gene and the underlying mechanisms remain to
be clarified. Genetic profiling of S. aureus strains allowed us to obtain some valuable information including data about CC49, the most frequently isolated lineage in wild rodents and shrews where compared to the human isolates the murine strains showed clear signs of host adaptation. However, the analysis had several limitations including the small sample size.
Our modern understanding of the hygiene hypothesis is that bacteria are not only the cause of disease but also essential for a healthy immune response and regulation. Varied microbial exposure prenatally and in early childhood protects us from pathological immune reactions such as autoimmune diseases and allergies. Against this background, the hypothesis that bacteria can act as allergens appears paradoxical. Nevertheless, there is growing evidence that Staphylococcus aureus (S. aureus) is associated with allergic reactions and serine protease-like proteins (Spls) produced by S. aureus have been identified as pacemakers of allergic reactions. To open prospects for treatment or causal therapy in patients at risk, the underlying mechanism of allergy induction by Spls was studied, focusing on the IL-33 pathway in airway inflammation. In a murine asthma model C57BL/6 J wild-type mice were repeatedly exposed to SplD via intratracheal application. After two weeks a Th2-biased inflammatory response was observed in the airways: IL-33 and eotaxin production, eosinophilia, bronchial hyperreactivity, and goblet cell hyperplasia. Blocking IL-33 activity with its soluble receptor ST2 counteracted these effects: significantly decreased numbers of eosinophils, IL-13+ type 2 ILCs, IL-13+CD4+ T cells as well as reduced IL-5 and IL-13 production by lymph node cells were observed. This study indicates that SplD induces allergic airway inflammation via the IL-33/ST2 axis. IL-33 upregulation was not accompanied by cell death, which indicates that IL-33 may not be passively released by dying cells but actively secreted by the airway epithelium. Future identification of the physiological substrates of the Spls may help to shed light on the source of IL-33 in SplD-induced airway inflammation.
While the causes of allergy induction by S. aureus Spls were addressed by investigating the underlying mechanism, the consequences of this were also of interest: Does the pro-allergenic response to S. aureus affect patients exposed to S. aureus in their airways? Therefore, the humoral and cellular immune response against Spls was studied in cystic fibrosis (CF) patients who are more frequently colonized with S. aureus than the healthy population and suffer from frequent recurrent airway infections. In this patient cohort a Th2 shift of the Spl-specific immune response became evident, including high Spl-specific serum IgE levels, strong induction of Th2 cell differentiation and production of type 2 cytokines following ex vivo stimulation with recombinant Spls. The observed response seems to be specific for Spls rather than being a general feature of S. aureus proteases since other putative allergens of S. aureus (ScpA, SspB) did not show increased IgE binding in CF sera. The Th2-driven immune response might impede antibacterial clearance and worsen the clinical picture. Larger clinical studies are needed to validate this notion by correlating the anti-S. aureus immune response with clinical parameters and testing new therapy options.
These results and findings shed light on a novel, possibly underestimated facet of the immune response against S. aureus and give impetus for further research on bacterial allergens in general, reaching beyond the species S. aureus.
Neue Antibiotika und Präventionsmaßnahmen gegen S. aureus sind aufgrund der starken Ausbreitung multiresistenter S. aureus-Stämme dringend erforderlich. Zur Entwicklung von Therapie- und Präventionsmaßnahmen werden geeignete Infektionsmodellen benötigt, die die klinische Situation möglichst exakt widerspiegeln. Da die Spezies S. aureus stark wirtsspezifisch ist, könnten wirtsadaptierte S. aureus-Stämme hierbei äußerst hilfreich sein. In der Infektionsforschung werden vor allem Mausmodelle verwendet. Da bisher jedoch angenommen wurde, dass Mäuse keine natürlichen Wirte von S. aureus sind, sind S. aureus-Forscher davon ausgegangen, dass Mäuse kein geeignetes Modell darstellen. Das wurde durch unsere und andere Arbeitsgruppen allerdings in den letzten Jahren widerlegt. Wir konnten zeigen, dass Labor- und Wildmäuse mit S. aureus besiedelt sind.
Im Rahmen dieser Arbeit sollte geklärt werden, ob murine Infektionsmodelle durch die Verwendung von mausadaptierten S. aureus-Stämmen optimiert werden können. Aus über 250 S. aureus-Stämmen, die aus Labor und Wildmäusen isoliert wurden, wurden vier mausadaptierte S. aureus-Isolate ausgewählt und mit dem humanen S. aureus-Isolat Newman in einem Pneumonie- und Bakteriämiemodell vergleichen. Diese Stämme wiesen einen repräsentativen spa-Typ sowie typischen Phagenmuster und Virulenzgene auf. Zudem waren sie in der Lage, murines Plasma zu koagulieren und in murinem Vollblut zu replizieren.
Es zeigte sich, dass das murine Isolat S. aureus DIP sowohl im Pneumonie- als auch im Bakteriämiemodell deutlich virulenter war als das humane Isolat Newman und die anderen getesteten mausadaptierten Stämme. Nach kürzester Zeit starben alle Tiere, die mit S. aureus DIP infiziert wurden. Wurde die Infektionsdosis im Vergleich zu Newman um 90 % reduziert, waren die bakterielle Last, der Belastungsscore, sowie die Zytokin- und Chemokinkonzentrationen nach Infektion mit S. aureus DIP bzw. S. aureus Newman vergleichbar. Im Besiedlungsmodell konnte gezeigt werden, dass die mausadaptierten Stämme S. aureus JSNZ sowie S. aureus DIP in der Lage sind, Mäuse über einen Zeitraum von 7 Tagen stabil zu besiedeln. Mäuse, die mit S. aureus Newman besiedelt waren, konnten den Stamm innerhalb dieses Zeitraums eliminieren. Die Genomsequenzierung der in vivo verwendeten S. aureus Stämme zeigte, dass lediglich S. aureus DIP für das Leukozidin LukMF‘ kodiert. Das lässt vermuten, dass die Präsenz des Virulenzfaktors für die gesteigerte Virulenz von S. aureus DIP verantwortlich sein könnte.
Des Weiteren sollten in dieser Arbeit ein Besiedlungsmodell mit murinen S. aureus-Isolaten etabliert und die beteiligten Immunzellen quantifiziert werden. Es zeigte sich, dass Mäuse mit murinen S. aureus-Isolaten bis zu 7 Tage besiedelt werden können wohingegen S. aureus Newman zu diesem Zeitpunkt nur noch in 20 % der Tiere nachweisbar war. Zudem konnte bei der intranasalen Besiedlung mit einer hohen Dosis S. aureus DIP [1 × 10^8 CFU] gezeigt werden, dass sowohl Th17-Zellen als auch γδ-T-Zellen nach 7 Tagen IL-17A, IL-17F und IL-22 produzieren. Jedoch konnte die Zytokinproduktion nur in Tieren nachgewiesen werden, die einen hohen Belastungsscore aufwiesen. Da nach 24 Stunden bei Tieren mit hohem Belastungsscore auch Bakterien in der Lunge detektiert wurde, ist anzunehmen, dass S. aureus diese Tiere nicht nur besiedelt, sondern bei ihnen auch eine Atemwegsinfektion verursacht hatte. Durch den geringen prozentualen Anteil an ILCs in den zervikalen Lymphknoten war es nicht möglich Rückschlüsse auf deren Zytokinproduktion zu ziehen. Somit gelang es zwar ein murines S. aureus-Besiedlungsmodell zu etablieren, jedoch kann keine Aussage zu den beteiligten Zellen des Immunsystems getroffen werden.
Zusammenfassend konnte gezeigt werden, dass Labormäuse mit mausadaptierten S. aureus-Stämmen länger besiedelt werden können als mit dem humanen Referenzstamm Newman. Zudem konnte mit Hilfe des mausadaptierten Stammes S. aureus DIP die Infektionsdosis im Pneumonie- und Bakteriämiemodell erheblich reduziert werden. Somit gelang es Mausmodelle durch die Verwendung von mausadaptierten S. aureus-Stämmen zu optimieren, auch wenn das nicht auf alle getesteten Isolate zutrifft. Durch die Anpassung an den murinen Wirt stellen mausadaptierte S. aureus-Stämme wie DIP und JSNZ ein physiologischeres Modell der Pathogen-Wirts-Interaktion dar. Die Verwendung eines solchen Stammes ermöglicht es ein besseres Verständnis für Infektionsprozesse und die Pathogen-Wirt-Interaktionen zu erlangen und dadurch eventuell neue Therapiemöglichkeiten zu entwickeln.
Es ist zu berücksichtigen, dass auch die Verwendung mausadaptierter S. aureus-Stämme in murinen Besiedlungs- und Infektionsmodellen lediglich ein Modell darstellt, welches Vor- und Nachteile hat. Daher ist es essenziell, dass Wissenschaftler die Grenzen jedes Modellsystems kennen und das richtige Infektionsmodell (oder eine Kombination davon) auswählen, um ihre Forschungsfragen zu beantworten.
Staphylococcus aureus (S. aureus) is among the most common infectious agents, burdening the
global health care system and challenging physicians. Thus, the demand for vaccination is
increasing, and despite many attempts, no vaccine is currently available. The iron-regulated
surface determinant protein B (IsdB) is a highly conserved surface protein of S. aureus. It has
an essential role in bacterial iron acquisition and cell attachment, functioning as a fitness factor.
It has been shown that IsdB is critical for S. aureus virulence and growth in iron-restricted
conditions, such as the human host. Therefore, IsdB was studied as a vaccine candidate. A nonadjuvant vaccine (V710) was developed based on IsdB, which showed promising results in the
preclinical, phase I, and phase IIa trials. Unexpectedly, in a phase IIb/III, in cardiothoracic
surgery patients that were infected by S. aureus, mortality was significantly higher in the
vaccinated group than the placebo. Despite increased antibody levels against IsdB in the
vaccinated patients, V710 failed to prevent S. aureus infection. Therefore, a better
understanding of the interaction between S. aureus and the immune system is required.
We have discovered that IsdB has an important role in host-pathogen interaction. This bacterial
protein activated human monocytes and murine bone marrow-derived dendritic cells
(mBMDCs) to produce proinflammatory cytokines, such as IL-6, TNF-α, IL-12, IL-23, IL-33,
and IL-1β. In silico molecular docking and DimPlot analysis predicted that IsdB binds to -TLR4
via non-covalent interactions. Microscale thermophoresis confirmed that IsdB has a high
affinity to recombinant human TLR4 in the nanomolar range. Inhibition of TLR4 completely
abolished the production of all the cytokines mentioned above in both cell types. Furthermore,
we characterized the TLR4 signaling pathway triggered by IsdB. In human monocytes, blocking
the myeloid differentiation factor 88 (MyD88) adaptor protein and NF-κβ transcription factor
caused complete abrogation of proinflammatory cytokines in response to IsdB, revealing that
IsdB induces cytokine release via the TLR4-MyD88-NF-κβ dependent pathway.
The consistent release of IL-1β suggested that IsdB induced activation of the inflammasome, a
multi-molecular complex known to play a crucial role in innate immunity. We corroborated our
observations in human monocytes and mBMDCs by inhibiting essential components of the
NLRP3 inflammasome. Blocking NLRP3, caspases in general and caspase-1 completely
inhibited the release of IL-1β. In monocytes, IsdB alone was sufficient to induce NLRPdependent IL-1β release, suggesting an alternative pathway of inflammasome activation. In
contrast, mBMDCs required an additional stimulus, such as ATP or MSU (known stress
signals) besides IsdB, to release IL-1β, indicating a classical inflammasome activation. These
results demonstrate that IsdB induces the release of IL-1β via the TLR4-NLRP3-Caspase-1
axis. Next, we addressed the molecular mechanisms involved in IsdB-induced IL-1β in monocytes.
A low concentration of intracellular potassium (K+) resulting from K+ efflux is known to trigger the NLRP3 inflammasome-mediated IL-1β release. We demonstrated that blocking potassium efflux by inhibition of ion channels, such as pannexin channels (P2X)7, and addition of extracellular KCl significantly reduced IsdB-induced IL-1β. Other common inflammasome activators, such as phagolysosome rupture and reactive oxygen species (ROS), did not contribute to the release of IL-1β in response to IsdB. In summary, we revealed yet another role of IsdB beyond iron acquisition from Hb and attachment to the host cells via vitronectin and integrins. It is conceivable that IsdB’s interaction with innate immune cells modulates the quality of the adaptive immune response, showing a new facet in the pathogen-host relationship of S. aureus that should be considered in future
vaccine development.
Zusätzlich zu ihrer Zielstellung humane Thrombozyten auf das Vorkommen von NAP1L1 zu untersuchen, liefert diese Arbeit Anhalt für die potenzielle Funktion diese „nukleären“ Proteins in diesem anukleären Zelltyp. Eine Enflussnahme von NAP1L1 auf den Transport und ggf. Import eines Schlüsselenzyms des mitochondrialen Stoffwechsels (DLAT) erscheint als ein möglicher Mechanismus für die Einflussnahme auf systemische entzündliche Prozesse durch NAP1L1.
Für humane Thrombozyten sind die beschriebenen Veränderungen von DLAT eine der ersten Hinweise auf eine aktive Regulation der intramitochondrialen Proteinausstattung in Reaktion auf die systemische Infektion mit bakteriellen und viralen Erregern. Bislang existierten in dieser Situation nur Daten, welche z.B. die direkte Beeinflussung von Plättchen durch Erreger, z.B. durch induzierte Degradation des anti-apoptotischen BcL-x208, beschreiben.
In der Zukunft wird es wichtig sein zu ergründen, welche funktionellen Konsequenzen aus einer Mehr- oder Minderexpression von NAP1L1 im Bezug auf die thrombozytäre Mitochondrienfunktion entstehen, im Weiteren welchen pathophysiologischen Stellenwert diese Änderungen besitzen und wie man diese dann therapeutisch beeinflussen kann.
Fest steht, dass die in der Einleitung aufgeworfene Frage, ob die im Rahmen einer akuten, systemischen Entzündungsreaktion beobachteten metabolischen Veränderungen eher Ausdruck einer aktiven Regulation als eines pathologischen Defektes sind, auch auf die humanen Thrombozyten übertragen werden muss.
Sepsis wird als eine lebensbedrohliche Organdysfunktion aufgrund einer fehlregulierten Reaktion des Organismus auf eine Infektion definiert (Sepsis-3) (23). Trotz der Fortschritte in der modernen Medizintechnik und der Entwicklung neuer Medikamente bleibt die Sepsis weiterhin eine der häufigsten Todesursachen auf Intensivstationen weltweit. Hinzu kommt, dass zukünftig von einer steigenden Letalität auszugehen ist. Gründe hierfür sind neben dem zunehmenden Anteil älterer und chronisch kranker Patienten die zunehmende Invasivität vieler diagnostischer und operativer Eingriffe und die steigende Antibiotikaresistenz der Erreger (35). Der rasante Anstieg resistenter Krankheitserreger weltweit stellt die Sepsisbehandlung vor neue Herausforderungen. Entscheidend für die Senkung der Letalität ist eine schnelle Diagnostik und eine zielgerichtete Therapie. Die auf kulturellen Verfahren basierte vorherrschende mikrobiologische Standarddiagnostik ist zu zeitintensiv, daher werden aktuell molekular-basierte Verfahren entwickelt die eine schnelle Diagnostik ermöglichen.
Ziel dieser Arbeit war herauszufinden, ob sich der Organismus in einer Sepsis mit dem invasivem Krankheitserreger auseinandersetzt und eine humorale Immunantwort generiert und ob diese Immunantwort erregerspezifisch ist.
Zur Beantwortung dieser Fragen wurde in dieser Arbeit ein Verfahren entwickelt, um die Antikörper-Bindung an verschiedene bakterielle Proteine zu quantifizieren.
Dafür wurden humane Plasmen von Sepsispatienten aus einer prospektiven klinischen Studie (VYOO-Studie, Greifswald) mittels automatisiertem 1D-Western Blot Verfahren (Simple WesternTM assay) auf ihren erregerspezifischen Antikörper-Gehalt untersucht. Das Erregerspektrum wurde durch die extrazellulären Proteine häufiger Sepsiserreger
(Enterococcus faecium, Enterococcus faecalis, Staphylococcus haemolyticus, Staphylococcus aureus, Pseudomonas aeruginosa, Serratia marcescens und Escherichia coli) bereitgestellt. Alle Bakterienisolate, mit Ausnahme von S. aureus (USA300 Δspa), stammen aus Wundabstrichen, Trachealsekreten und Blutkulturen der Sepsispatienten und wurden in der Medizinischen Mikrobiologie des Greifswalder Universitätsklinikums aufbewahrt und für die Kultivierung zur Verfügung gestellt. Mit Hilfe des automatisierten, eindimensionalen Western Blot (1D-WB) wurde die Bindung der extrahierten extrazellulären Proteine (ec-stat) verschiedener Sepsiserreger an humanen Serumantikörpern untersucht.
Die Ergebnisse dieser Arbeit stellen heraus, dass immunkompetente Patienten während einer systemischen Infektion eine adaptive Immunantwort generieren. Um herauszufinden ob diese Immunantwort erregerspezifisch ist, wurden die Patientenplasmen nicht nur gegen extrazelluläre Proteine (ec-stat) des jeweiligen invasiven Erregers getestet, sondern auch gegen ec-stat anderer Bakterienspezies. Bei jedem der untersuchten Erreger konnten Patienten mit einem Antikörperanstieg identifiziert werden. Bei keinem Patienten stiegen Antikörper gegen alle untersuchten Erreger an. Schlussfolgernd beruht der Antikörperanstieg auf einer spezifischen Reaktion des Immunsystems auf bakterielle Invasion und ist demzufolge erregerspezifisch.
Es zeigte sich, dass v.a. bei Patienten mit einer abdominellen Sepsis die Antikörpertiter gegen mehrere Darmbakterienspezies ansteigen. Diese Befunde deuten darauf hin, dass sich das Immunsystem mit multiplen Erregern auseinandergesetzt hat, selbst wenn mikrobiologisch nur ein Erreger nachgewiesen wurde. Dies könnte relevant für die Antibiotikatherapie sein.
Des Weiteren konnte beobachtet werden, dass trotz mikrobiologisch nachgewiesenem Erreger bei einigen Patienten keine Immunantwort gegen den Keim generiert wurde.
Insgesamt zeigen die Daten, dass viele Patienten bereits vor einer Infektion spezifische Antikörper gebildet haben. Schlussfolgernd hat sich das adaptive Immunsystem schon seit längerer Zeit (vor Infektion) mit dem Krankheitserreger auseinander gesetzt.
Mit Hilfe einer immunologischen Sepsisserologie, wie der Verwendung des in dieser Arbeit genutzten Simple WesternTM Assays, lassen sich wichtige Informationen über die Pathogenese der Sepsis und die Reaktion des Immunsystems gewinnen. Diese ergänzen die konventionelle mikrobiologische Diagnostik. Ein besseres Verständnis der Immunantwort bei Sepsis ist eine Voraussetzung für die Entwicklung neuer therapeutische Ansätze. In wie weit der Simple WesternTM Assay - jedoch das diagnostische Portfolio bei Sepsis erweitern kann, müssen weitere Untersuchungen zur Sensitivität und Reproduzierbarkeit adressieren.
Das Gram-positive Bakterium S. aureus besiedelt rund 20 % der Menschen persistent und asymptomatisch, während sich bei den anderen Phasen der Kolonisation und Nicht-Kolonisation abwechseln. Als opportunistisches Pathogen kann S. aureus seinen Wirt auch infizieren und eine Vielzahl von Krankheitsbildern hervorrufen. Diese reichen von oberflächlichen Haut- und Weichteilinfektionen bis hin zu komplexen Infektionsgeschehen wie der Sepsis und können den Tod der betroffenen Person zur Folge haben. Antibiotika-resistente Varianten wie Methicillin-resistente S. aureus (MRSA) verkomplizieren die Therapie und sind als „Krankenhauskeime“ gefürchtet. Die Kolonisierung und Infektion mit MRSA beschränkt sich allerdings nicht nur auf Gesundheitseinrichtungen, sondern etablierte sich auch in der Allgemeinbevölkerung sowie in Landwirtschaftsbetrieben. Da S. aureus neben dem Menschen ebenfalls eine Vielzahl von Wild- und Nutztieren kolonisieren und infizieren kann, welche als Reservoir, Überträger sowie als Brutstätten neuer Varianten fungieren, ist ein holistischer Ansatz wie das „One Health“-Konzept gefordert, um Ausbreitung und Infektionen unter Kontrolle zu halten.
Dies erfordert geeignete Tiermodelle, um die komplexen Interaktionen von S. aureus mit seinem Wirt zu analysieren und therapeutisch zu beeinflussen. Am häufigsten werden dafür etablierte Labormaus-Stämme (z.B. C57BL/6, BALB/c) eingesetzt und mit S. aureus-Stämmen des Menschen kolonisiert oder infiziert. Weil S. aureus jedoch einen Wirtstropismus ausbildet, ist die Aussagekraft solcher Mausmodelle durch die Inkompatibilität zwischen Erreger und Wirt limitiert. Manche Aspekte der Wirt-Pathogen-Interaktion lassen sich in diesen Modellen gar nicht untersuchen. Hier könnten murin-adaptierte S. aureus-Stämme eine bessere Option sein, zumal Vorarbeiten unserer Arbeitsgruppe zeigten, dass Mäuse natürliche Wirte von S. aureus sind.
In dieser Arbeit sollte daher untersucht werden, ob Befunde aus dem Menschen in der Maus repliziert werden können, wo die Limitationen von Mausmodellen liegen und wie mögliche Optimierungsansätze aussehen könnten. Weitere Schwerpunkte lagen auf Analysen der Populationsstruktur von S. aureus in murinen Spezies unterschiedlicher Habitate und der Adaptation muriner S. aureus-Isolate an ihren Wirt. Außerdem wurden Maus-adaptierte Stämme in Infektions- und Kolonisationsmodellen eingesetzt, um ihre Eignung im Mausmodell zu testen.
In einer Originalarbeit (Mrochen et al.; Front. Immunol.; 2021) haben wir anhand der Immunantwort auf die beiden S. aureus-Virulenzfaktoren SplB und GlpQ beschrieben, dass Daten aus klinischen Studien in der Maus rekapituliert werden können. S. aureus-naive Mäuse zeigten nach Vakzinierung mit SplB eine sehr ähnliche Polarität der Immunantwort wie Menschen nach natürlicher Besiedlung/Infektion mit S. aureus. Mäuse reagierten mit einer Th2-Antwort auf das nicht-adjuvantierte Protein SplB, zudem war die Anzahl an Eosinophilen in der Milz signifikant erhöht. Im Serum der Mäuse ließ sich SplB-spezifisches IgE messen. Damit spiegelte das Mausmodell den beim Menschen bekannten Typ2-Bias der Immunreaktion auf Spls von S. aureus wider. GlpQ löste hingegen ohne Adjuvans keine messbare Immunreaktion aus, hatte also eine geringe Immunogenität. Dies zeigt, dass S. aureus-naive Mäuse sich dazu eignen könnten, die intrinsische Immunogenität und das Immunpolarisationspotential von S. aureus-Proteinen zu untersuchen, was für die Entwicklung von S. aureus-Vakzinen von Bedeutung ist.
In einem Übersichtsartikel (Mrochen et al.; Int. J. Mol. Sci.; 2020) haben wir die Limitationen von konventionellen S. aureus-Infektionsmodellen, bei denen Mäuse mit human-adaptierten S. aureus-Isolaten infiziert werden, veranschaulicht und Alternativen aufgezeigt. Zunächst stellten wir den Wirtstropismus von S. aureus und Mechanismen der Wirtsanpassung dar. Darauf aufbauend diskutierten wir einige Limitationen konventioneller Mausmodelle. Wir betrachteten Aspekte der genetischen Variation der verwendeten Maus- und S. aureus-Stämme, wirtsspezifische Virulenzfaktoren, Unterschiede des humanen und murinen Immunsystems, den Einfluss des murinen Mikrobioms und der verwendeten Infektionsdosen. Zusammenfassend kann dazu gesagt werden, dass durch die Inkompatibilitäten zwischen humanen S. aureus-Isolaten und der Maus die bakterielle Fitness und Virulenz eingeschränkt ist. Dies kann die Aussagekraft von Experimenten massiv einschränken. Beispielsweise können in ihrer Affinität verminderte Rezeptor-Ligand-Interaktionen die Akquisition von Nährstoffen erschweren und die Wirkungslosigkeit bestimmter Virulenzfaktoren (wie z.B. Superantigenen) die Immunevasion behindern. Wir haben daraufhin alternative Modell-Ansätze vorgestellt und diskutiert, welche unterschiedliche Aspekte der Wirt-S. aureus-Interaktion verbessern sollen (humanisierte Mäuse, dirty mice, Wildlinge). Die ebenfalls mögliche Verwendung murin-adaptierter S. aureus-Stämme beseitigt Inkompatibilitäten zwischen Maus und S. aureus komplett, kann aber manche humanspezifischen Vorgänge nicht modellieren.
In zwei weiteren Originalarbeiten (Mrochen et al.; Int. J. Med. Microbiol.; 2018 und Raafat et al.; Toxins; 2020) haben wir die Populationsstruktur von S. aureus in Labormäusen bzw. Ratten unterschiedlicher Habitate (Labor, Wildnis) beschrieben und die Adaptation der Bakterien an diese Wirte dargestellt. Rund um den Globus sind Labormäuse mit S. aureus besiedelt. Einige murine Isolate gehörten zu klonalen Komplexen wie CC1, CC5, CC8 und CC15, die sich auch beim Menschen finden, sodass hier eine Übertragung vom Menschen auf die Maus wahrscheinlich ist. Dennoch zeigten viele der Isolate eindeutige Zeichen einer Wirtsadaptation. So waren humanspezifische Virulenzfaktoren seltener als bei humanen Referenzisolaten gleicher Linien vorhanden. 47 % der Isolate gehörten jedoch zum klonalen Komplex CC88, der selten beim Menschen ist. Diese Linie war in Vorarbeiten unserer Arbeitsgruppe bereits als murin-adaptiert identifiziert worden, was sich hier bestätigte.
Bei Laborratten zeigte sich ein ähnliches Bild. Auch hier wurden viele Stämme isoliert, die zu typisch humanen Linien (z.B. CC1, CC8, CC15) gehören, außerdem CC88-Isolate. Sie zeigten Zeichen einer Adaptation an Ratten. S. aureus-Isolate aus Wildratten und aus von Wildratten abstammenden Ratten in Gefangenschaft besaßen eine vollkommen andere Populationsstruktur. Hier fanden sich u.a. Linien (CC49, CC130, ST890), die wir in einer anderen Studie aus Wildmäusen isoliert haben. Auch sie wiesen die Zeichen einer Wirtsadaptation auf.
Diese Studien zeigen, dass die Besiedlung von Labormäusen und -ratten durch S. aureus weit verbreitet ist und vermutlich meist vom Menschen ausgeht. Dennoch weisen die Laborstämme Anzeichen einer Adaptation an die Nager auf, was eine längere Kontaktzeit voraussetzt, die diese evolutionären Vorgänge ermöglicht. Die Besiedlung der Labortiere hat zudem Folgen für die Konstitution des Immunsystems, da es auf dieses Bakterium geprimt wird. Weiterhin kann eine Besiedlung zu opportunistischen Infektionen führen. Folglich sollte bei Experimenten stets der S. aureus-Besiedlungsstatus erfasst werden, um einen etwaigen Einfluss auf die erzielten Ergebnisse ausschließen bzw. nachweisen zu können. Bei Wildnagern und ihren Verwandten weist S. aureus eine andere Populationsstruktur auf, welche über einen gewissen Zeitraum auch in Gefangenschaft stabil zu sein scheint. Wildtiere sind damit ein bedeutendes Reservoir und potentielle Überträger von S. aureus, aber ebenfalls eine Quelle neuer Stämme, die zu Forschungszwecken eingesetzt werden könnten.
In zwei weiteren Originalarbeiten (Trübe et al.; Int. J. Med. Microbiol.; 2019 und Fernandes et al.; Microorganisms; 2021) haben wir die Eignung verschiedener murin-adaptierter Stämme in Infektions- und Kolonisationsmodellen diskutiert. S. aureus-Isolate aus Wild- und Labormäusen wurden in BALB/c-Mäusen mit dem humanen Stamm Newman verglichen. Ein CC49-Isolat (S. aureus DIP), das aus Rötel- und Gelbhalsmäusen stammte, erwies sich als besonders virulent und provozierte selbst in einer im Vergleich mit dem Stamm Newman zehnfach geringeren Infektionsdosis vergleichbare Symptome und Immunreaktionen. Die geringere Infektionsdosis ist wahrscheinlich klinisch relevanter, da pathophysiologische Eigenschaften von S. aureus auch dichteabhängig reguliert werden (quorum sensing).
In einem Kolonisationsmodell mit dem murin-adaptierten Laborstamm JSNZ wurde die dekolonisierende Wirkung von Aurintricarbonsäure (ATA) evaluiert. ATA war zuvor in breit angelegten in vitro-Screenings als potenter Adhäsionsinhibitor identifiziert worden. C57BL/6-Mäuse wurden mit JSNZ kolonisiert und anschließend mit ATA behandelt. Leider war ATA im Mausmodell wirkungslos, während mit der in der Klinik eingesetzten Kontrollsubstanz Mupirocin eine vollständige Dekolonisation erreicht werden konnte. JSNZ bestätigte sich jedoch als persistierender Besiedler der Maus. Dieses Besiedlungsmodell ist daher sehr gut geeignet, um neue Agenzien für eine S. aureus-Dekolonisierung zu testen oder die Wirt-Pathogen-Interaktion bei der Kolonisation im Detail zu analysieren.
Die Ergebnisse dieser Arbeit zeigen, dass sich Mausmodelle besser für die Forschung an S. aureus eignen als bisher angenommen. Trotzdem muss die Übertragbarkeit der Ergebnisse auf den Menschen stets kritisch überprüft werden. Die Maus-adaptierten S. aureus-Stämme sind ein neues und potentes Werkzeug, die S. aureus-Forschung zu optimieren. Von besonderem Interesse ist die Möglichkeit, Mäuse persistent zu kolonisieren, wie dies typisch für die Interaktion von S. aureus mit seinem menschlichen Wirt ist. Diese wichtige Facette im Zusammenspiel zwischen dem Erreger und seinem Wirt wird nun erstmals der experimentellen Forschung zugänglich.
Humans are exposed to a plethora of microorganisms that reside on outer and inner body surfaces. These are collectively referred to as the human microbiome. The evolutionary relationship between humans and their microbiome is very complex. It is now widely accepted that these microorganisms are not just passive spectators but play an important role in health. The presence or absence of certain microbes is also linked to various diseases, including inflammatory bowel disease, cardiovascular disease, obesity, cancer, and allergies.
Allergies are several conditions caused by a misguided immune response to foreign antigens that are typically harmless. Common allergic diseases include atopic dermatitis (AD), allergic asthma, hay fever, and anaphylaxis. The incidences of allergic diseases are continuously rising, with up to 40% of the human population thought to be sensitised to environmental antigens. This increased incidence is not simply the result of societies becoming more aware and better at diagnosing these diseases. It is believed that the increases in allergies and sensitisation have environmental causes and are related to Western lifestyles. It is known that the rate of allergies is less frequent in developing countries. They are also more likely to occur in urban than rural areas. The prevailing view of the involvement of bacteria in allergies is described by the hygiene hypothesis. The hypothesis claims that decreased exposure to diverse microbial communities early in life increases the risk of developing allergic diseases. There are numerous examples to support this claim. For example, children born and raised in close contact to farm animals or in the presence of pets, and who are thus in direct and constant contact with a complex microbial environment, are protected from allergic diseases. On the other hand, colonisation or infection with certain bacteria increases allergic disease risks. This seems to contradict the hygiene hypothesis.
It appears that the members of the microbiome have different effects on allergy, and the hygiene hypothesis may not apply to every player in the complex microbial diversity that humans are in contact with. Therefore, a better understanding of the host bacterial interaction is required on the level of bacterial species.
This work studies the interplay between bacteria and the immune system to identify and characterise bacterial components with allergenic properties. In this quest, Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis) were investigated for their allergenic properties and involvement in different allergic diseases. In the case of S. aureus, evidence is presented on allergic implications for two different components; serine protease-like proteins (Spls) and superantigens (SAg). Furthermore, experimental support is provided on the allergenic properties of the extracellular serine protease (Esp) from S. epidermidis. We argue that stimulating allergic reactions by staphylococci is an immune evasion mechanism that increases the survival chances of the bacteria within the host.
In chapter 1, an introduction is given to both S. aureus and S. epidermidis and their interactions with the immune system. Also, the bacterial components with allergenic properties and allergic diseases with known bacterial involvement are presented. Finally, the question of why bacteria cause allergy is discussed.
Chapter 2 describes allergic reactions to the Spls of S. aureus in a cohort of cystic fibrosis patients. Chapter 3 focuses on the SAgs of S. aureus. SAgs were discovered more than 30 years ago, but their physiological function is still under discussion. In this chapter, the allergenic properties of SAgs and their possible immunological mechanisms are reviewed, and a possible link between SAgs and allergic diseases is discussed. In chapter 4, the focus shifts to S. epidermidis and its involvement in AD. The human immune response to the Esp from S. epidermidis is characterised in healthy and AD individuals. The allergenic properties of Esp imply a detrimental role of S. epidermidis in AD. Finally, chapter 5 summarises and discusses the results of this thesis. In this section, the pieces are put together, and attention is brought back to the question of why bacteria cause allergies.
Sepsis ist die dritthäufigste Todesursache in Deutschland und verursacht jährliche Krankenhauskosten von mehr als 8 Mrd. €. Über die Pathophysiologie ist noch immer vieles unbekannt. Bei der Bekämpfung von extrazellulären Infektionserregern spielt vor allem das humorale Immunsystem eine wichtige Rolle, da die von B-Zellen/ Plasmazellen gebildeten Antikörper wichtige antiinfektive Agenzien darstellen. Dennoch ist die Rolle der B-Zellen bei einer Sepsis nicht gut verstanden. Ergebnisse aus Mausmodellen, aber auch aus klinischen Studien mit Sepsispatienten zeigen einerseits die vermehrte Apoptose von B-Zellen, anderseits wurde auch eine polyklonale B-Zellaktivierung beschrieben, die mit einem unspezifischen Anstieg der Antikörperkonzentrationen im Blut einhergeht.
In dieser Arbeit sollte untersucht werden, ob während einer systemischen bakteriellen Infektion, wie der Sepsis, auch eine Erreger-spezifische Antikörperantwort ausgebildet wird. Mit Hilfe von zwei serologischen Assays wurde die Antikörperantwort von Sepsispatienten gegen extrazelluläre Proteine von 16 typischen Sepsiserregern bestimmt. Anhand von Plasmaproben aus zwei prospektiven Studien konnte die Antikörperkinetik von einem Zeitpunkt vor der klinischen Diagnose bis maximal 16 Tage nach Diagnose ermittelt werden.
Mittels eines Simple Western Assays - einem semi-quantitativen Immunoblot-Assay - wurde zunächst die Erreger-spezifische Antikörperantwort von Patienten mit einer vorliegenden mikrobiologischen Erregerdiagnose untersucht. 54 % der Patienten zeigten eine spezifische humorale Immunantwort gegen den mikrobiologisch diagnostizierten Erreger, wohingegen die Antikörperspiegel für das Kontrollantigen TT unverändert blieben.
Zur Untersuchung der zweiten Patientenkohorte wurde ein Bead-basierter Suspensions-Array auf Grundlage der xMAP-Technologie (Luminex®) entwickelt. Der Infection Array ermöglichte die gleichzeitige Quantifizierung der spezifischen Antikörperantwort gegen 16 verschiedene Erreger. Bei 64 der 76 untersuchten Patienten wurden Anstiege der IgG-Antikörper gegen einen oder mehrere dieser Erreger beobachtet. In 62,5 % der Fälle stimmten diese Anstiege mit der mikrobiologischen Diagnose überein. Bei 20/64 Patienten wurden signifikante Anstiege der IgG-Spiegel spezifisch für einen oder zwei Erreger nachgewiesen, in 44/64 Fällen wurden Anstiege gegen mehr als zwei Erreger beobachtet. Bei Letzteren richtete sich die Antikörperantwort hauptsächlich gegen Enterokokken und Enterobacteriaceae, was primär auf zwei Ursachen zurückgeführt werden kann: (i) Ein Großteil dieser Patienten hatte einen intraabdominellen Infektionsfokus. Polymikrobielle Infektionen durch endogene Darmbakterien, typischerweise verursacht durch eine Darmruptur oder die Insuffizienz einer chirurgischen Darmnaht, sind hierbei ein plausibler Befund, der der mikrobiologischen Diagnostik offenbar häufig entgeht. (ii) Außerdem können Sepsis-bedingte Organstörungen zu einer gesteigerten Darmpermeabilität führen, die wiederum die Translokation intestinaler Bakterien erleichtert.
Die Ergebnisse dieser Arbeit lassen den Schluss zu, dass die beobachteten Antikörperreaktionen auf eine Antigen-spezifische Memoryantwort zurückzuführen sind. In etwa 2/3 der Fälle wird eine Sepsis endogen durch Bakterien des eigenen Mikrobioms verursacht. Entsprechend war es nicht überraschend, dass gegen alle untersuchten Erreger bereits vor der Infektion und auch bei gesunden Kontrollpersonen basale antibakterielle IgG-Spiegel gemessen wurden. Zudem waren die IgG-Anstiege oft bereits zwischen Tag 0 und Tag 8 zu beobachten. Bei einer Primärantwort mit dem Erreger würde die Aktivierung der Zellen und der Klassenwechsel der Antikörper deutlich mehr Zeit erfordern.
Die Untersuchung der Erreger-spezifischen Antikörperantwort hat gezeigt, dass ein serologischer Assay Rückschlüsse auf den Infektionserreger zulässt. Außerdem zeigen die Daten, dass auch Kommensale wie Darmbakterien das Immunsystem prägen, was wiederum Einfluss auf die humorale Immunantwort während einer Infektion haben kann. Dieser Aspekt wird bei Mausmodellen oft vernachlässigt, kann aber entscheidend für die Translation der Ergebnisse aus Tierversuchen auf den Menschen sein. Aber auch diagnostisch bietet der Infection Array Einsatzmöglichkeiten. Im Gegensatz zur konventionellen Erregerdiagnostik ist die Serologie robust gegenüber einer bereits begonnenen Antibiotikagabe, und sie könnte dabei helfen, zwischen einer Kontamination und dem Infektionserreger zu unterscheiden, z. B. im Fall von KNS wie S. epidermidis. Ebenso wäre der Einsatz bei Biofilm-assoziierten Infektionen wie z. B. Protheseninfektionen oder Endokarditis denkbar. Hier besteht die Infektion oft bereits lange asymptomatisch, bevor sie klinisch diagnostiziert wird. Bei Diagnose bestehen meist bereits erhöhte Antikörperspiegel, die sich von denen gesunder Individuen unterscheiden. Ein serologischer Test könnte hier invasive Eingriffe, um an Material für die mikrobiologische Diagnose heranzukommen, reduzieren und die Sensitivität der Erregerdiagnostik erhöhen. Durch den Einsatz rekombinanter Proteine kann die Spezifität des Assays in der Zukunft erhöht werden. Zu diesem Zweck wurden in dieser Arbeit bereits erste immunogene Proteine identifiziert. Durch die Verwendung rekombinanter Proteine wäre zudem zukünftig die Erweiterung des Erregerpanels um typische, aber womöglich schwerkultivierbare Erreger möglich. Damit könnte die Sepsisforschung Neuland betreten.