Refine
Document Type
- Doctoral Thesis (7)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
- Cardiolipin (2)
- BAM (1)
- Beschichtung (1)
- Brewster angle microscopy (1)
- CRMP2 (1)
- Diffusion (1)
- Dünne Filme (1)
- LE/LC phase transition (1)
- Langmuir Monolayers (1)
- MICAL (1)
Es wurde eine Methode zur Herstellung ultradünner Filme aus Metall bzw. metallischen Verbindungen (Legierungen) etabliert. Die Struktur und die physikalischen Eigenschaften der Filme wurden untersucht. Die entwickelte Präparationsmethode beruht auf induzierter Filmkontraktion nach erzwungener Benetzung (iFCaFW). Die Filme bestehen aus ultradünnen vertikal heterostrukturierten Multischichten (2D-VHML), sie entstehen durch den Beschichtungsvorgang und bestehen aus jeweils einer nm-dicken metallischen Schicht (M) eingebettet zwischen zwei Metall(hydr)oxidschichten (MOxHy) im nm- bis sub-nm Bereich. Dieser vertikal heterostrukturierte Aufbau wurde bei allen untersuchten Filmmaterialien beobachtet. Alle in dieser Arbeit vorgestellten Schichtsysteme wurden unter atmosphärischem Druck hergestellt. Es konnten Substrate aus Silicium und Muskovit sowie aus Borosilikat- und Kalk-Natron-Glas (Objektträger) beschichtet werden. Jede, aus flüssigem Metall bzw. flüssiger Legierung hergestellte Schicht verfügt über eine feste (Hydr)oxidschicht an der Luftgrenzfläche. Diese feste (Hydr)oxidschicht fungiert als Substrat für die nächste darüber aufgebrachte Schicht aus flüssigem Metall bzw. flüssiger Legierung. Somit entstehen vertikal heterostrukturierte Multischichten durch identische Wiederholung des Beschichtungsvorgangs. Dies ist eine innovative und vergleichsweise umweltfreundliche Methode, um transparente, elektrisch leitfähige und lateral homogene nm-dünne ein- oder mehrschichtige Metallfilme herzustellen. Verwendet wurden Metalle mit sehr niedriger Schmelztemperatur (kleiner als 300 °C), wie Bismut, Gallium, Indium, Zinn und ihre Legierungen. Die hohe Oberflächenspannung der geschmolzenen Metalle und Legierungen sowie die Adhäsion mit der die (Hydr)oxidhaut dieser Metalle und Legierungen auf verschiedenen Substraten haftet ermöglicht die Beschichtungsmethode.
The goal of this thesis was to characterize the properties of tetramyristoyl cardiolipin (TMCL) and several environmental influences on it. This included investigating the pH and temperature dependency of TMCL as well as the influences of ROS on TMCL and exam-ining the lipid-protein interactions between TMCL and cytc. Furthermore, I extended the research to the analysis of binary mixtures composed of TMCL and dimyristoyl phosphati-dylcholine (DMPC). To this end, I investigated the samples with the aid of the Langmuir monolayer technique. This method allowed me to mimic interactions occurring at the membrane surface as it represents one membrane layer. The recording of π-A isotherms was also coupled with further other techniques like Brewster angle microscopy (BAM), Infrared Reflection-Absorption Spectroscopy (IRRAS), Grazing Incidence X-Ray Diffraction (GIXD) and Total Reflection X-Ray Fluorescence (TRXF) to enable a more comprehensive monolayer study. In addition, some systems were analyzed using Thin-layer Chromatography (TLC) and/or Differential Scanning Calorimetry (DSC) to be able to draw conclusions about sample composition or characteristic temperatures, respectively.
This work study a monolayer of branched poly(ethyleneimine (PEI) adsorbed onto oppositely charged surfaces with iron chelates or iron ions in the absorption solution. The conformation of adsorbed PEI is explored in the dependence of the composition of the adsorption solution by measuring the surface forces using atomic force microscopy (AFM) with the colloidal probe (CP) at different ionic strengths (INaCl) in surrounding aqueous solution. The surface coverage of these layers is investigated using X-ray reflectivity.
PEI solutions show different pH values with iron chelates (pH = 3), iron ions (pH = 4.67) or pure water (pH = 9.3) at room temperature. Low surface coverage of PEI at pH = 3 adjusted by monovalent ions was also observed. However, adsorbing PEI with iron ions or iron chelates and washing with pure water shifts the pH, leading to an adsorbed PEI layer with high coverage. In our observation, the influence of iron ions and iron chelates on the surface coverage of PEI film is stronger than the pH effect. PEI adsorbed from a pure water solution shows flat conformation. Surface force measurements with CP show that PEI adsorbed from solutions containing iron chelates or iron ions cause almost identical steric forces. The thickness of the brush L is determined as a function of the ionic INaCl in the measuring solution. It scales as a polyelectrolyte brush.
The maximum number density of gold nanoparticles (AuNPs) adsorbed onto the PEI brushes was identical and larger than on flatly adsorbed PEI. On the PEI layer with the larger surface coverage, the AuNPs aggregate; on the PEI layer with the lower surface coverage they do not aggregate. Taken together, these results contribute to understanding the mechanisms determining surface coverage and conformation of PEI and demonstrate the possibility of controlling surface properties, which is highly desirable for potential future applications.
In this thesis, we also investigate the top layer (PSS and PDADMA) of polyelectrolyte multilayer (PEM) films. PEM films were prepared by sequential adsorption of oppositely charged PEs on solid substrates. PEM films consist of polydiallyldimethylammonium (PDADMA) as polycation and the polystyrene sulfonate (PSS) as polyanion. PDADMA has a smaller linear charge density than PSS. For this system, two different growth regimes are known: parabolic and linear. I studied the top layer (PSS and PDADMA) conformation of PEM films and how the structure of this top layer is affected by increasing the number of PDADMA/PSS layer pairs N and the addition of salt to the surrounding solution.
The INaCl was changed during the force-distance measurements. PSS terminated films always show electrostatic forces at INaCl < 0.1 M and flat conformation. The surface charge density is always negative at INaCl < 0.1 M. The surface charge of the PSS top layer starts to turn from negative to positive at N ≥ 14. At N between 13 and 15, adsorbed PSS cannot compensate all the excess PDADMA charge. This leads to an accumulation of the positive extrinsic sites within the PSS terminated film beyond a specific N. At INaCl ≈ 0.1 M, an exponential decaying force was measured. This is an indication of unusual long-ranged hydration force (decay length λ-1 ≈ 0.2-0.5 nm), and PSS terminated film shows zwitterionic or neutral surface. At INaCl > 0.1 M, a non-electrostatic action occurs and the PSS terminated film reswells in solution.
PDADMA terminated surface consisting of few layers show a flat conformation and the electrostatic forces were measured. For N ≥ 9 and INaCl ≤ 0.1 M, steric forces were measured. The force-distance profiles are well-explained by Alexander and de Gennes theory. PDADMA chains show a maximum L that is around 40-45 % of the contour length. For INaCl ≈ 0.1 M, and N > 9, a flat, neutral or zwitterionic surface is found (λ-1 ≈ 0.3-0.9 nm). For N = 9 and INaCl > 0.1 M, a strong screening of electrostatic interaction and attractive forces are observed. For N > 9 and INaCl > 0.1 M, the ion adsorption into the PE chains leads to an increase in the monomer size and as a result, the L increases and PDADMA brushes reswell again into the solution.
These data show that by varying N and INaCl, different surface forces can be obtained: Electrostatic forces (flat chains) both positive and negative, steric forces (brush), hydration force (flat, neutral or zwitterionic surface), and effects not yet explained (reswelling brush).
This work examines the influence of monovalent and divalent cations on tetramyristoyl cardiolipin (TMCL) monolayers. A lipid monolayer can undergo an ordering transition of the lipid alkyl chains from a disordered fluid phase (liquid-expanded (LE)) to an ordered gel phase (liquid-condensed (LC)). Compression of the lipid monolayer in a Pockels-Langmuir trough was monitored with a Wilhelmy plate tensiometer, yielding the surface pressure π in dependence of the area a molecule can occupy on average A, as a π-A-isotherm. The onset of the first order LE/LC phase transition is marked by an abrupt change in the isotherm at surface pressure πc.
These associated lipid membrane changes were characterized by variation of the compression speed, kind and concentration of the monovalent and divalent salt, pH, and temperature. The CL monolayer phase transition was found to depend on the compression speed, yielding only a small variation in the compression isotherms.
For monovalent cations on the cardiolipin monolayer, the dependence on salt concentration of the lipid liquid gel phase transition surface pressure πc was determined and a non-monotonic behavior was found, with a maximum in πc for a salt concentration of 0.1 mol/l. The maximum in πc can be shifted with pH (e.g. pH = 4.2). This behavior extended to potassium, sodium and cesium cations in the subphase. No ion specific effects were observed, which pointed to the prevalence of electrostatic interactions in the system.
Different divalent salt subphases, of either magnesium, calcium, strontium, manganese, iron or zinc salts, with fixed sodium chloride concentration of 0.15 mol/l at pH of 5.8 and 25 °C were investigated. πc decreases upon addition of divalent salts to the subphase. This points to increased screening and binding effects. Strongest binding effects were observed for calcium and manganese cations.
The electrostatic interactions of the system were modeled with a mean-field theory: Grahame’s equation, and a simple law of mass action. CL is modeled at half its molecular area and half its charge, with a proton dissociation constant of the phosphate group Ka,intrinsic(PO4) = 0.1 mol/l. The agreement with the experiment was satisfactory.
A linear dependence of πc on the temperature was found for cardiolipin monolayers on all subphases. The isothermal area compressibility modulus KA is calculated from selected isotherms. It was found that the flexibility of the monolayer decreases with temperature and the area per molecule for the cardiolipin fluid phase.
The compression speed, monovalent salt concentration, pH, and selected divalent cations were investigated with the BAM. For all a sigmoidal growth of xgel with compression was observed. For high salt concentrations non-circular and dendritic domains were observed.
A simple model for the nucleation process was introduced, yielding an estimate of 20 nm for the critical domain radius, which is below the resolution of the BAM, but a common length scale in biological systems.
Survival, development, and function of cells depend on numerous signaling pathways or-
chestrating the response to external and internal stimuli. Besides the well-established signaling through reversible phosphorylation, the concept of specific, spatio-temporal redox modifi-
cations of protein cysteinyl and methionyl side chains that regulate the biological function of these proteins is supported by an overwhelming amount of data. Although the specific reduction of protein redox modifications has been studied intensively, the oxidation of protein side chains was thought to be a result of so-called ‘oxidative stress’. However, this term has been increasingly challenged, since signaling pathways depend on specific, spatio-temporal oxidation of target proteins, most likely catalyzed by specific enzymes. The discovery of MICAL (molecule interacting with CasL) proteins evinced
the first examples of specific oxidases in signal transduction in the redox regulation of cellular functions.As part of the semaphorin signaling pathway, MICAL proteins were characterized to stereospecifically oxidize methionyl residues in actin, thereby regulating actin deolymerization, a process important in neurogenesis and cell migration. This oxidation can be reversed by the specific methionine-R-sulfoxide eductase B1. Besides the regulation of actin dynamics, MICALs are involved in the regulation of cell proliferation and
apoptosis, and the production of hydrogen peroxide may qualify them as specific oxidases also for cysteinyl residues.
The target specificity of thioredoxin family proteins is determined by electrostatic compatibility
(2021)
The thioredoxin (Trx) family of proteins comprises many key enzymes in redox signaling, that catalyzes specific reversible redox reactions, e.g. dithiol-disulfide exchange reactions, (de-)glutathionylation, trans-nitrosylation, or peroxide reduction. With the analysis of a large number of proteins, as well as a certain redox couple in [article 1] and [article 4], we demonstrated that electrostatic complementarity is the major distinguishing feature that controls the specific interactions of Trxs with their target proteins. The primary aim of this work was to determine the importance of this specific interaction and the prediction, modulation, and engineering of functional redox interactions of Trx family proteins. To understand the role of electrostatic complementarity for the mammalian Trx1-TrxR complex, we generated more than 20 hTrx1 mutants and systematically engineered the electrostatic potential within and outside the contact area with TrxR [article 1]. The effects of these specific alterations distributed all over the protein surface were analyzed by enzyme kinetics, differential scanning fluorimetry (DSF), circular dichroism (CD) spectroscopy, and MD simulations. Trx family proteins have a broad and very distinct substrate specificity, which is a prerequisite for redox switching. In [article 4], we comprehensively compared the classification of various redoxins from all kingdoms of life based on their similarity in amino acid sequence, tertiary structure, and electrostatic properties. These similarities were then correlated to the existence of common interaction partners. Our analyses confirmed that the primary and tertiary structure similarities do not correlate to the target specificity of the proteins as thiol-disulfide oxidoreductases. However, we demonstrated that the electrostatic properties of the protein from both Trx or Grx subfamilies is the major determinant for their target specificity.
Although structurally very similar, CxxC/S-type or class I Grxs act as oxidoreductases and CGFS-type or class II Grxs act as FeS cluster transferases. In [article 3], we re-investigated the structural differences between the two main classes of Grxs to solve the mystery of the missing FeS transferase activity of the CxxC/S-type and the lack of oxidoreductase activity of the CGFS-type Grxs. The presence of a distinct loop structure adjacent to the active site is the major determinant of the Grx function. We confirmed that the function of Grxs can be switched from oxidoreductase to FeS cluster transferase by construction of a CxxC/S-type Grx with a CGFS-type Grx loop and vice versa. Results of several in vitro and in vivo assays together with the detailed structural analyses indicate that not a radically different substrate specificity accounts for the lack of activity, but rather slightly different modes of GSH binding, which is an essential nucleophile required in redox and iron homeostasis.
Various processes within the cell depend on GSH, including redox reactions, reversible posttranslational modifications, and iron metabolim. GSH is not only important in the export of FeS precursors from mitochondria, but it is also an essential cofactor for cluster binding in iron sulfur Grxs. In [article 2], we discussed the role of GSH and iron sulfur Grxs in iron metabolism, the physiological role of CGFS-type Grx interactions with BolA- like proteins, and the cluster transfer between Grxs and recipient proteins. The first well characterized physiological function of a Grx-BolA hetero complex is presented with the Grx3/4-Fra2-mediated regulation of iron homeostasis in yeast.
In synopsis, the results presented and discussed in these articles and the manuscript support the concept of electrostatic properties as the main determinant in substrate specificity towards functional predictions in Trx family proteins. The mathematical model presented here showed significantly accuracy and precision in function prediction. We are aware that our findings are focused on Trx family proteins as a particular family of proteins, but by using a machine learning strategy this mathematical model is being trained with numerous different protein models for better efficacy and accuracy, that may lead to new insights also in the specific interactions of other protein families. The new concept for the substrate specificity determinant doesn’t eliminate previously described aspects for molecular recognition, instead it reveals a deeper understanding of the protein-protein interaction. The 3D structural elements of a protein play a significant role in the specificity and function. We have been able to activate an inactive protein by replacing defined structural elements. Elimination of the loop structure from CGFS-type Grx5 transformed it from an FeS transferase into an oxidoreductase and the activity was further increased by modification of the active site. We believe that the present findings may be useful to investigate proteins in great detail regarding their function based on structure and electrostatic properties. Understanding the nature of the specific interactions may enable us to specifically modify the signal transduction pathways.
The layer-by-layer method is a robust way of surface functionalization using a wide range of materials, e.g. synthetic and natural polyelectrolytes (PEs), proteins and nanoparticles. Thus, this method yields films with applications in diverse areas including biology and medicine. Sequential adsorption of different oppositely charged macromolecules can be used to prepare tailored films with controlled molecular organization. In biomedical research, electrically conductive coatings are of interest. In manuscript 1, we investigated films sequentially assembled from the polycation poly (diallyldimethyl-ammonium) (PDADMA) and modified carbon nanotubes (CNTs), with CNTs serving as the electrically conductive material. We assume that charge transport occurs through CNT contacts. We showed that with more than four CNT/PDADMA bilayers, the electrical conductivity is constant and independent of the number of CNT/PDADMA bilayers. A conductivity up to 4∙10^3 S/m was found. It is possible to control the conductivity with the CNT concentration of the CNT deposition suspension. A higher CNT concentration resulted in thicker CNT/PDADMA bilayers, but in a lower conductivity per bilayer. We suspect that an increased CNT concentration leads to a rapid CNT adsorption without the possibility to rearrange themselves. If PDADMA then adsorbs on the disordered CNTs in the next deposition step, the average thickness of the polymer layer is thicker than on the more ordered CNT layer from the dilute solution. This leads to an increased PE monomer/CNT ratio and lower conductivity. More polycations between the CNT layers leads to less CNT contacts. Thus, the controlled composition of films can be used to fulfill specific requirements.
For many applications of polyelectrolyte multilayers (PEMs), cheap PEs with a broad distribution of molecular weights are used. It was unknown whether the distribution of molecular weights of the PE in the adsorption solution is maintained during the adsorption process and hence in the film. To investigate this, the PSS adsorption solution in article 2 consisted of a binary mixture of short and long poly (styrene sulfonate) (PSS). A good model system to study layered films in terms of composition are PDADMA/PSS multilayers. Neutron reflectivity and in-situ ellipsometry measurements were carried out to determine the PSS composition in the film and the growth regimes. At a mole fraction of long PSS of 5 % or more in solution, the exponential growth (which is characteristic of short PSS) is totally suppressed, and only long PSS is deposited in the resulting multilayer. Variation of adsorption time of PSS showed that short PSS first adsorbs to the surface but is displaced by long PSS. Between 0 and 5 % of long PSS in the adsorption solution exponential growth occurs. The fraction of short PSS in the film continuously decreases with the increase of long PSS in the adsorption solution. In the assembly of films prepared from binary PSS mixtures, the short PSS leaves the film through adsorption/desorption steps both during PSS adsorption and during PDADMA adsorption (as PDADMA/PSS complexes). Both techniques show that the composition of the film does not correspond to that of the deposition solution. The composition and thus the properties of the resulting multilayer are influenced by the choice of adsorption time. Moreover, we conclude that a multilayer grown from a polydisperse polyelectrolyte contains fewer mobile low molecular weight polymers than the deposition solution.
In manuscript 1 and article 2, the composition of multilayers was studied. In manuscript 1 adsorption kinetics were important for the arrangement of CNTs on the surface. In article 2, the adsorption kinetics, i.e. the diffusion of the polyelectrolytes to the surface, was also investigated. In article 3, we investigated the influence of the composition of the film as well as the preparation condition on the mobility of PEs in the film. The molecular weight of the polycation PDADMA and the NaCl concentration of the deposition solution were varied. The vertical PSS diffusion constant D_PSS within the PDADMA/PSS multilayers was measured using neutron reflectivity. The salt concentration of the preparation solution defines the polymer conformation during deposition. The molecular weight of the polycation determines the degree of intertwining. Together, both parameters determine the polyanion-polycation coupling and thus the PSS mobility within the network. Log−log display of D_PSS vs the molecular weight of PDADMA and fits to two power laws (D_PSS ∝ X_n(PDADMA)^(-m) ∝ M_w(PDADMA)^(-m)) reveals for films built from 10 or 200 mM NaCl a kink. Below and above the kink, the dependence of D_PSS on M_w(PDADMA) can be described by different power laws. For Χ_n(PDADMA) < X_n,kink(PDADMA) ≈ 288, the exponents are consistent with the predictions of the sticky reptation model. X_n(PDADMA) ≈ 288 is the entanglement limit. For Χ_n(PDADMA) > X_n,kink(PDADMA) ≈ 288, the decrease of D_PSS with M_w(PDADMA) is larger than below the entanglement limit, which is indicative of sticky reptation and entanglement. The PSS diffusion constant of films built from 100 mM NaCl drops three orders of magnitude when increasing the molecular weight of PDADMA from 45 kDa to 72 kDa. To figure out if an immobile PSS fraction exists in the film built from 72 kDa PDADMA (beyond the entanglement limit), the film was annealed at different conditions in article 4: both temperature and salt concentration were varied. For data analysis, the simplest model with two PSS fractions with different diffusion constants was used. These diffusion constants increase as the temperature of the surrounding solution is increased. As assumed in article 3, an immobile PSS fraction exists when annealing at room temperature. At higher annealing temperatures, at least two diffusion processes must be distinguished: the diffusion of the highly mobile PSS fraction through the entire film and a slow PSS fraction, mowing in a limited way. The choice of preparation conditions determines whether a polyelectrolyte multilayer can intermix completely. It is not clear if complete intermixing will ever occur for films built with PDADMA beyond the entanglement limit. It is possible that the diffusion is more complex. Long-term measurements will clarify this question. Calculating scattering length density profiles with subdiffusive behavior would be interesting and is a challenge for the future. Furthermore, immobile fractions are only visible with long annealing times. We hypothesize that an immobile or nearly immobile fraction is present whenever the dependence of D_PSS on the molecular weight of PDADMA cannot be described by the sticky reptation. To verify this hypothesis, further studies are necessary.
All results presented and discussed in the manuscript and articles show that by varying the preparation conditions, tailored films can be built. The composition of the film is also determined by the adsorption kinetics. In addition, the mobility of the PEs within the multilayers can be controlled by varying the conformation, mingling and entanglement of the chains within the film. The influence of the salt concentration in the preparation solution on the growth regimes during film formation is part of our future research. It is planned to investigate films built of different PDADMA molecular weights under varied annealing conditions to better understand the mobile and immobile fractions.