Refine
Document Type
- Doctoral Thesis (3)
Language
- German (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- Biotransformation (1)
- Darm (1)
- Enzyme (1)
- Jejunum (1)
- Kernrezeptor (1)
- Leber (1)
- Metabolismus (1)
- PAR2 (1)
- Pharmakokinetik (1)
- Targeted Proteomics (1)
Institute
Charakterisierung der Expression und Funktion metabolischer Enzyme im humanen intestinalen Gewebe
(2019)
Bei der Arzneimittelentwicklung liegt der Fokus nicht nur auf der Wirksamkeit und Sicherheit einer pharmakologisch aktiven Substanz, sondern auch auf einer möglichst einfachen, idealerweise oralen Applikation. Um die benötigten Wirkstoffkonzentrationen im Zielorgan zu erreichen, wird die einzunehmende Dosis eines Medikaments in Abhängigkeit der präsystemischen Elimination ermittelt. Inzwischen ist bekannt, dass nicht ausschließlich der hepatische, sondern auch der intestinale Stoffwechsel die orale Bioverfügbarkeit eines Medikaments wesentlich beeinflussen kann. Arzneistoffe, die während der Darmpassage einer starken Metabolisierung unterliegen, sind zudem prädestiniert für unerwünschte Interaktionen mit anderen Substanzen, welche die entsprechenden Stoffwechselenzyme hemmen oder induzieren. Für die Abschätzung pharmakokinetischer Parameter eines neuen Wirkstoffs sind daher Kenntnisse zur Expression sowie Funktion klinisch relevanter intestinaler Stoffwechselenzyme von Bedeutung.
Bisher publizierte Daten basieren größtenteils auf der Genexpression, obwohl aufgrund posttranskriptionaler Prozesse nicht zwingend Aussagen zur resultierenden Proteinmenge getroffen werden können. Die verfügbaren Daten zum intestinalen Proteingehalt wurden mittels immunologischer Methoden erhoben, die erhebliche Limitationen in Bezug auf Spezifität, Reproduzierbarkeit und Robustheit aufweisen. Diese Aspekte finden bei den inzwischen etablierten LC-MS/MS-basierten Targeted-Proteomics-Methoden Berücksichtigung. Dazu werden die Proteine einer Messprobe enzymatisch gespalten, um entstehende proteospezifische Peptide zur Quantifizierung der Proteine von Interesse zu nutzen.
Ein Ziel der vorliegenden Arbeit bestand in der Entwicklung und Validierung einer entsprechenden Methode zur gleichzeitigen Bestimmung von CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP3A5, UGT1A1, UGT1A3, UGT2B7 sowie UGT2B15 in biologischen Matrices, welche die aktuell gültigen Leitlinien in Bezug auf Selektivität, Linearität, Richtigkeit, Präzision und Stabilität erfüllt. Bereits bei der ersten Anwendung der Methode zur Quantifizierung der Enzyme in kommerziell erhältlichen und selbst isolierten Mikrosomen zeigte sich, welchen erheblichen Einfluss die Probenvorbereitung auf die ermittelten Proteingehalte hat.
Diese Erkenntnis wurde im Rahmen eines internationalen Projektes bestätigt, bei dem humane Leberproben desselben Ursprungs in diversen Laboren mit den dort etablierten Methoden prozessiert worden sind. Bezogen auf die eingesetzte Gewebemenge ergaben sich bei der Messung der Mikrosomen 6 - 30-fach geringere Enzymgehalte als bei der Analyse des nicht-fraktionierten Gewebes, da die subzelluläre Aufspaltung einer Probe mit erheblichen Proteinverlusten einhergeht. Folglich wurden alle weiteren Untersuchungen zur absoluten Enzymquantifizierung unter Verwendung von filterbasierten Zentrifugaleinheiten (filter aided sample preparation; FASP) mit Gesamtgewebelysatproben durchgeführt. Sowohl die optimierte Probenaufarbeitung als auch die validierte Targeted-Proteomics-Methode fanden bei der Untersuchung der Darmsegmente von 9 Spendern Anwendung, wobei jeweils Gewebe aus dem Duodenum, oberen und unteren Jejunum, Ileum sowie Colon zur Verfügung stand. Von den 13 untersuchten Enzymen wurden in allen Dünndarmabschnitten nur CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, UGT1A1, UGT1A3 und UGT2B7 nachgewiesen, deren Gehalt im Jejunum am höchsten war. Im Colon wurde auf Proteinebene keines der Metabolisierungsenzyme detektiert. Die entsprechenden Genexpressionsdaten dieser 8 Enzyme korrelieren signifikant mit den ermittelten Proteinwerten. Korrespondierend zur fehlenden Nachweisbarkeit der übrigen 5 Enzyme auf Proteinebene waren die Gene CYP2B6, CYP2C8, CYP2E1 sowie UGT2B15 nur sehr geringfügig und CYP1A2 gar nicht exprimiert.
Zur Charakterisierung der metabolischen Aktivität der intestinalen Enzyme wurde eine weitere LC-MS/MS-basierte Methode entwickelt und validiert. Als Modellsubstrate fungierten Diclofenac (CYP2C9), Omeprazol (CYP2C19), Dextromethorphan (CYP2D6), Midazolam (CYP3A), Ezetimib (UGT1A) und Naloxon (UGT2B7). Die begrenzte Verfügbarkeit des intestinalen Gewebes sowie dessen sehr geringer mikrosomaler Proteingehalt stellten besondere Anforderungen an die Sensitivität der Methode. Ihre Eignung zur Charakterisierung der intestinalen Metabolisierungsaktivität wurde bei der Anwendung auf ein jejunales Mikrosomen-Gemisch gezeigt.
Die im Rahmen dieser Arbeit generierten Daten zur Expression klinisch bedeutsamer Metabolisierungsenzyme entlang des humanen Darms tragen zu einem besseren Verständnis des intestinalen First-Pass-Metabolismus bei. Diese Kenntnisse können sowohl bei der Entwicklung neuer Arzneistoffe als auch für die Erstellung von Physiologie-basierten pharmakokinetischen Modellen (PBPK-Modellen) nützlich sein, um die orale Bioverfügbarkeit sowie das Interaktionspotential pharmakologisch aktiver Substanzen abzuschätzen.
Das kolorektale Karzinom stellt mit ca. 63.000 Neuerkrankungen pro Jahr die zweithäufigste Tumorerkrankung in Deutschland dar.1 Weltweit wird bis 2030 mit einem Anstieg der Inzidenz und Mortalität um 60 % gerechnet..264 Dabei steigt die Zahl der Kolonkarzinome in Schwellenländern bereits deutlich an und betrifft immer jüngere Menschen.2 Aufgrund dieser gesundheitlichen Herausforderungen ist die Entwicklung neuer Therapieverfahren von besonderem Interesse. Mit der Entdeckung einer möglichen Beteiligung von Gerinnungsproteasen an der Progression verschiedener Karzinome, darunter auch kolorektaler Erkrankungen, wurde ein neuer therapeutischer Angriffspunkt geschaffen, der im Rahmen der vorliegenden Dissertation untersucht werden sollte. Im Mittelpunkt der Arbeit steht die Wirkung des aktivierten Gerinnungsfaktors FXa und der PAR2-Aktivierung auf das Kolonkarzinom in vitro und in vivo.
In vitro wurden drei verschiedene Kolonkarzinomzelllinien (murine MC38 Zellen, humane HCT116 Zellen und humane CaCo2 Zellen) vergleichend auf den Einfluss von FXa untersucht. Es konnte beobachtet werden, dass die Proliferation und Migration von MC38 Zellen durch FXa, nicht aber durch Thrombin signifikant erhöht wird. Der gleiche Effekt wird im Wound Scratch Assay nach selektiver PAR2-Aktivierung (Protease Activated Receptor 2) beobachtet, was auf einen PAR2-gesteuerten Migrationseffekt in MC38 Zellen hindeutet, da FXa seine zellulären Effekte über PAR2 vermitteln kann. Darüber hinaus kann eine Beteiligung des EGFR an dieser FXa-induzierten Migration bestätigt werden. Im Western Blot zeigt sich eine verstärkte Aktivierung der Signalmoleküle p38 MAPK, p44/42 MAPK und AKT nach FXa-Stimulation als mögliche Ursache der migratorischen und proliferativen Effekte des Gerinnungsfaktors. Der Einsatz des EGFR-Inhibitors Erlotinib zeigte eine Beteiligung des EGFR an der Aktivierung von p38 MAPK und AKT in MC38 Zellen. Die Stimulation von Kolonkarzinomzellen der Maus mit FXa führt zudem zu einer signifikant erhöhten Expression von PAR2.
Die aktivierten Gerinnungsfaktoren FXa und Thrombin haben dagegen keinen Einfluss auf die Proliferationsrate von humanen HCT116 und CaCo2 Zellen in vitro. Während die Motilität von CaCo2-Zellen durch FXa und Thrombin reduziert wird, erhöhen diese die Migrationsfähigkeit von HCT116-Zellen signifikant. Die selektive PAR2-Aktivierung führt ebenso wie FXa zu einer reduzierten Motilität der CaCo2-Zellen. Dies deutet auf einen PAR2-vermittelten Effekt hin. In HCT116 Zellen löst sowohl eine PAR1- als auch eine PAR2-Aktivierung eine signifikant erhöhte Zellmigration aus. Das zugrundeliegende promigratorische Signal nach FXa-Stimulation konnte mittels Western Blot in der gesteigerten Phosphorylierung von p38 MAPK und p44/42 MAPK in CaCo2 Zellen gefunden werden. In HCT116 Zellen hatte FXa keinen Einfluss auf die Aktivierung dieser Signalmoleküle.
In vivo wurde erfolgreich ein Tiermodell für die subkutane Injektion von murinen Kolonkarzinomzellen etabliert. Dabei werden eine Million MC38 Zellen in die Flanke von C57Bl/6J Wildtyp und PAR2-KO Mäusen mit C57Bl/6J Hintergrund injiziert und das Tumorwachstum über 21 Tage beobachtet. Die Ergebnisse zeigen einen entscheidenden Einfluss von PAR2 auf die Tumorentstehung. PAR2-KO Mäuse weisen nach 21 Tagen signifikant kleinere Tumore auf als ihre Wildtyp Artgenossen. PAR2-KO Tiere müssen zudem seltener aufgrund ihres Gesundheitszustandes vorzeitig aus dem Versuch genommen werden. Auffällig ist auch das größere Milzgewicht im Verhältnis zum Körpergewicht bei PAR2-KO Tieren, was auf gesteigerte Inflammationsreaktionen hindeuten könnte. Der Einsatz eines direkten FXa-Hemmers (Apixaban) in klinisch relevanten Dosierungen hat in vivo keinen signifikanten Einfluss auf die Progression des Kolonkarzinoms.
Die in dieser Arbeit generierten Daten belegen vor allem die Bedeutung von PAR2 für die Progression des Kolonkarzinoms: In vitro können zum Teil starke, aber sehr unterschiedliche Effekte des aktivierten Gerinnungsfaktors FXa bzw. des aktivierten PAR2 auf kolorektale Karzinomzellen beobachtet werden. In vivo hingegen zeigt sich, dass weniger FXa als vielmehr die Aktivierung von PAR2 direkt an der Progression des kolorektalen Karzinoms beteiligt ist. Durch molekularbiologische Untersuchungen mittels PCR konnte zudem eine Beteiligung des S1P-Signalweges nachgewiesen werden.
Bereits seit dem Ende des 20. Jahrhunderts ist bekannt, dass PAR1 in verschiedenen Krebsarten überexprimiert wird und direkt mit der Malignität von Tumorerkrankungen assoziiert werden kann. Auch eine steigende PAR2-Expression kann mit einem schlechteren Outcome bei Patienten mit Magen- oder Prostatakrebs in Verbindung gebracht werden.186 In der vorliegenden Arbeit konnte der Zusammenhang zwischen PAR2-Signaling und einer schlechteren Prognose im Darmkrebs-Tiermodell bestätigt werden. Die Expression des Rezeptors im Endothel oder im Gastrointestinaltrakt, in direkter Umgebung des Tumors, kann einen starken Einfluss auf das Tumorgeschehen ausüben. Die Inhibition von PAR2 oder des nachgeschalteten PAR2-Signalings könnte daher einen vielversprechenden neuen Therapieansatz beim kolorektalen Karzinom darstellen.
Die orale Einnahme stellt für Patienten die einfachste und unkomplizierteste Möglichkeit dar, ein Arzneimittel zu applizieren und ist das angestrebte Ziel der Arzneimittelentwicklung. Dem entgegen stehen jedoch die evolutionär entstandenen Möglichkeiten des Körpers, aufgenommene Fremdstoffe zu inaktivieren und zu eliminieren. Ein Zusammenspiel aus anatomischen Gegebenheiten und den Enzymen des Fremdstoffmetabolismus sorgt dafür, dass ein Teil der oral applizierten Dosis bereits verstoffwechselt wird, bevor er über das arterielle System an den Wirkort gelangen kann (first-pass-Effekt). Als Ort dieses Metabolismus wurde, neben der Leber, auch der Darm identifiziert. Um das Ausmaß des first- pass-Effektes abschätzen zu können, werden Daten über den Gehalt der arzneistoffmetabolisierenden Enzyme in diesen Organen benötigt. Als Methode der Wahl bietet sich dazu die LC-MS/MS an, da mit ihr verschiedene Enzyme in einem analytischen Lauf bestimmt werden können und sie sich durch eine hohe Empfindlichkeit, Reproduzierbarkeit und Spezifität auszeichnet.
Mit der vorliegenden Arbeit wurde das analytische Spektrum der bisher publizierten Methoden zur Bestimmung von CYP- und UGT-Enzymen erweitert. Mit der neuen Methode können nun zwei Carboxylesterasen, 17 CYP-Enzyme und fünf UGT-Enzyme quantifiziert werden. Weiterhin wurde die Methode anhand von Richtlinien für bioanalytische Methoden umfassend validiert. Durch die Verwendung von rekombinant hergestellten arzneistoffmetabolisierenden Enzymen konnte der gesamte analytische Prozess, von der Probe bis zum Endergebnis, erstmalig umfassend charakterisiert werden. Dabei zeigte sich eine, für einen derart komplexen Prozess bemerkenswerte Präzision von maximal 15,5% Variation nach sechsmaliger Durchführung.
Die entwickelte Methode wurde dann auf gepaarte Proben aus Leber und Jejunum von elf gesunden Organspendern angewendet. Im Jejunum wurden CES1, CES2, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2J2, CYPA4, CYP3A5, CYP4F2, CYP4F12, UGT1A1, UGT1A3, UGT2B7 und UGT2B17 gefunden. In der Leber konnten alle untersuchten Enzyme (CES1, CES2, CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP2J2, CYP3A4, CYP3A5, CYP3A7, CYP4F2, CYPF12, UGT1A1, UGT1A3, UGT2B7, UGT2B15 und UGT2B17), bis auf CYP4A11 nachgewiesen werden. Für einige Enzyme (CES2, CYP2C18, CYP2C19, CYP2J2, CYP3A4, CYP4F2, CYP4F12) wurden im Jejunum Enzymgehalte gemessen, die mit denen in der Leber vergleichbar sind, was noch einmal unterstreicht, dass der Darm auch als klinisch relevanter Ort des Arzneistoffmetabolismus betrachtet werden muss. Auffällig war hier zudem die deutlich höhere Variabilität in den Darmproben, verglichen mit den Leberproben, die ihre Ursache in Umwelteinflüssen oder dem Mikrobiom des Darms haben könnten. Außerdem wurde die Expression der zugehörigen Gene mittels quantitativer real-time PCR untersucht. Hier bestand nur in einigen Fällen eine signifikante Korrelation zwischen Genexpression und Proteingehalt, was für zwischengeschaltete regulatorische Mechanismen spricht.
Weiterhin wurden mit dieser Methode Leberproben einer Kohorte von Patienten mit Krankheitsbildern, die mit einer Einschränkung der Leberfunktion einhergehen, untersucht. Dazu wurden die Patienten nach der verbleibenden Leberfunktion (Child-Pugh-Score) und nach der zugrundeliegenden Erkrankung eingeteilt. Es zeigt sich eine generelle Abnahme des Gehaltes an arzneistoffmetabolisierenden Enzymen mit fortschreitender Verschlechterung der Leberfunktion, wobei sich CYP2E1 als besonders anfällig erwiesen hat und bereits in Child- Pugh-Klasse A signifikant erniedrigt war. Bei den verschiedenen Erkrankungen zeigt sich ein uneinheitliches Bild, die prozentuale Verteilung der Enzyme ist jedoch bei allen Erkrankungen gegenüber den gesunden Kontrollproben verändert.
Über die Regulation der Expression von arzneistoffmetabolisierenden Enzymen ist bisher noch wenig bekannt. Es gibt aber Hinweise aus der Literatur, dass bestimmte nukleäre Rezeptoren an der Regulation der Enzyme beteiligt sein können. Deshalb wurde eine LC-MS/MS-basierte targeted-proteomics-Methode zur Quantifizierung von nukleären Rezeptoren in Darm- und Lebergewebe entwickelt und validiert. Im Gewebe konnten nur AhR und HNF4α nachgewiesen werden, da die Empfindlichkeit des verwendeten experimentellen Ansatzes vermutlich nicht ausreichend ist. Dabei war HNF4α in Darmgewebe deutlich höher exprimiert als AhR. Außerdem wurde die Expression der nukleären Rezeptoren auf Genebene durch quantitative real-time PCR untersucht. Dabei wurde eine höhere Expression von CAR in der Leber gefunden, während PXR in Darm stärker exprimiert wird. Dies entspricht den Erkenntnissen aus der Literatur, nach denen CAR einen regulatorischen Effekt auf arzneistoffmetabolisierende Enzyme in der Leber hat, während dies für PXR in Darm zutrifft. Diese Arbeit kann einen Beitrag zum weitergehenden Verständnis der Regulation von arzneistoffmetabolisierenden Enzymen durch nukleäre Rezeptoren beitragen.
Bei allen diesen Arbeiten gilt es zu beachten, dass das Vorhandensein eines Proteins nicht zwangsläufig mit seiner Aktivität gleichzusetzen ist. Jedoch zeigen zahlreiche Beispiele aus der Literatur, dass sich mit den Daten aus Proteomics-Studien PBPK-Modelle aufstellen lassen, die die in klinischen Studien erhobenen Daten mit beeindruckender Genauigkeit reproduzieren können.