Refine
Year of publication
- 2021 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1) (remove)
Has Fulltext
- yes (1) (remove)
Is part of the Bibliography
- no (1)
Keywords
- Hydrothermal vent (1) (remove)
Institute
Crab Spa, is a stable diffuse-flow hydrothermal vent site located at the 9°N hydrothermal vent field on the East Pacific Rise (EPR). Remarkably, the physicochemical conditions at Crab Spa have remained largely constant since its discovery in 2007 providing a uniquely stable environment in which a well-adapted and stable microbial community has evolved. This microbial community is dominated by the class Campylobacteria, accounting for up to 90% of the community. Little is known, however, about the metabolic pathways that allow the Campylobacteria to dominate the bacterial community at Crab Spa. To address this fundamental question, a two-pronged approach was taken consisting of first determining the dominant metabolic pathways in situ, and second to study those same metabolic pathways and their controls in more detail under defined conditions in vitro in the model campylobacterium Sulfurimonas denitrificans.
Metagenomic analysis of two environmental samples provided the blueprint to determine the metaproteomic profile of the Crab Spa microbial community. This allowed to identify the dominant organisms and their major metabolic pathways sustaining the microbial community at Crab Spa. About 90% of the genes for transcription and protein synthesis of the metagenome sequences belonged to just three genera of Campylobacteria: Sulfurimonas, Sulfurovum and Arcobacter. The metaproteomic analyses confirmed that the active microbial community was dominated by Campylobacteria, carrying out carbon fixation via the reductive TCA cycle predominantly fueled by the oxidation of sulfide and sulfur with nitrate and oxygen. The analysis further revealed that pathways might be partioned between different members of the bacterial community. Proteins involved in electron acceptor–related pathways, in particular denitrification, accounted for up to 20% of the whole metaproteome, which could be seen as an adaptation to the scarcity of electron acceptors at Crab Spa. Conversely, proteins related to electron donor–associated metabolic pathways accounted for less than 0.1% of the metaproteome, possibly in response to the high concentration of the electron donor. To follow up on this hypothesis, chemostat experiments with S. denitrificans were performed under either electron-acceptor or -donor limitation. These experiments confirmed that electron-acceptor limitation lead to the elevated expression of electron-acceptor proteins. However, a higher expression of electron-donor proteins was not observed under electron-donor limitation. Besides hydrogen sulfide, elemental sulfur has the potential to serve as an important electron donor at Crab Spa. However, up to know no information was available on how Campylobacteria might be able to utilize elemental sulfur. For this, S. denitrificans grew with either thiosulfate or cyclooctasulfur (S8) as sole electron donors and its transcriptome and proteome was compared. The results revealed a differential expression of the SOX sulfur oxidation pathway (soxCDYZ and soxABXYZ) in response to the two different sulfur compounds. Based on these findings, a model for the oxidation of cylcooctasulfur was proposed that also applies to other sulfur-oxidizing Campylobacteria and helps in the interpretation of environmental metatranscriptomic and –proteomic data (Götz, Pjevac, et al., 2018; Lahme et al., 2020). The presented results help to better understand the microbial processes at hydrothermal vents.