Refine
Document Type
- Doctoral Thesis (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- KHV (2)
- Aeromonas (1)
- Aeromonas salmonicida (1)
- DIVA Vakzine (1)
- Fish (1)
- Koi (1)
- OMV (1)
- Oral Vaccine (1)
- Oral vaccine (1)
- Vaccine (1)
Institute
Herstellung sicherer und wirksamer Lebendvakzine gegen die Koi Herpesvirus Infektion von Karpfen
(2019)
Das Koi Herpesvirus (KHV, Cyprinid herpesvirus 3) verursacht eine tödliche Erkrankung bei Kois und Karpfen. Um sichere und wirksame Lebendvirusimpfstoffe zu erhalten, haben wir Einzel- und Doppeldeletionsmutanten von KHV erzeugt, aus deren Genom die für die beiden Nukleotidstoffwechselenzyme Thymidinkinase (TK, ORF55) und Desoxyuridin-Triphosphatase (DUT, ORF123) codierenden Leserahmen gezielt entfernt worden waren. Die Mutationen wurden durch homologe Rekombination in den zellkulturadaptierten aber noch virulenten Stamm KHV-T eingeführt. Umfangreiche in vitro Tests zeigten, dass die Deletion der TK- und DUT- Gene die KHV-Replikation in Zellkultur (CCB Zellen) nicht erkennbar beeinträchtigt. In vivo Tests an Jungkarpfen zeigten jedoch eine im Vergleich zum Ausgangsvirus signifikant reduzierte Virulenz der Einzelgen-Deletionsmutanten eine fast vollständige Attenuierung der Doppelmutante. Dennoch waren alle immunisierten Karpfen gegen eine letale Belastungsinfektion mit virulentem KHV geschützt. Mittels einer neu entwickelten Triplex-Real-Time-PCR und aus Kiementupferproben isolierter DNA war es möglich, mit TK-negativem KHV immunisierte und Wildtyp- infizierte Karpfen zu differenzieren. Daher könnte die Doppelmutante KHV- TΔDUT/TK als genetischer Marker-Impfstoff geeignet sein.
In einer zweiten Studie wurde die Funktion von vier immunogenen Hüllglykoproteinen der ORF25-Genfamilie (ORF25, ORF65, ORF148 und ORF149) von KHV untersucht. Hierbei wurde festgestellt, dass alle vier Gene für die Virusreplikation in Zellkultur entbehrlich sind. Während die Deletion von ORF65 keinen erkennbaren Einfluss auf die Virusvermehrung hatte, führte die Deletion von ORF148 sogar zu einer leicht erhöhten Replikationsrate. Im Gegensatz dazu bewirkten Deletionen von ORF25 oder ORF149 einen verzögerten Eintritt in die Wirtszellen und damit auch eine verlangsamte Vermehrung und Ausbreitung der Viren. Interessanterweise führte die gemeinsame Deletion der Gene ORF148 und
ORF149 zu einem wildtypähnlichen Wachstumsverhalten, das auf gegensätzlicher Funktionen der beiden Proteine hindeutete. Elektronenmikroskopische Untersuchungen von CCB-Zellen, die mit den verschiedenen Glykoproteindeletionsmutanten infiziert waren, zeigten keine Auswirkungen auf die Bildung und Reifung der Virionen im Zellkern oder im Zytoplasma, oder die Virusfreisetzung. Im Tierversuch erwiesen sich KHV-Mutanten mit Deletionen der Gene ORF148 und/oder ORF149 als geringfügig, aber für eine Verwendung als Lebendvirus-Impfstoff nicht ausreichend abgeschwächt. Überlebende Fische waren jedoch gegen Belastungsinfektionen ebenso gut geschützt wie Wildtyp-infizierte Karpfen, so dass die Deletion dieser antikörperinduzierenden Proteine zur Entwicklung von KHV-Markerimpfstoffen beitragen könnte, die eine serologische Differenzierung von Wildtyp-infizierten und geimpften Fischen erlauben (DIVA- Prinzip). In einer dritten Studie wurden durch serielle Zellkulturpassage von virulentem KHV und anschließende in vivo Infektionsversuche Hinweise darauf gefunden, dass das bislang nicht näher charakterisierte, neben dem ORF149 Gen lokalisierte ORF150 für einen weiteren Virulenzfaktor von KHV codiert. Möglicherweise könnte also durch eine kombinierte Deletion der im Rahmen dieser Arbeit untersuchten KHV-Gene ein sicherer und wirksamer, genetisch und serologisch differenzierbarer Markerimpfstoff hergestellt werden.
Gram-negative bacteria are known to naturally produce outer membrane vesicles (OMVs), which are closed nanoparticles (10 to 450 nm) containing virulence factors and pathogen associated molecular patterns (PAMPs). For over 20 years, OMVs of Neisseria meningitidis (N. meningitidis), in combination with three purified outer membrane proteins, have been successfully used as parts of human vaccines which illustrates the safety and potential of OMV based vaccines. So far only little is known about the OMVs of fish pathogenic bacteria. The production of OMVs has been described for the fish pathogenic gram-negative bacterium Aeromonas salmonicida (A. salmonicida) which is the causative agent of furunculosis resulting in high morbidity and mortality of salmonid fish. The immunostimulatory potential of OMVs derived from A. salmonicida as well as the possibility of establishing an oral vaccine model in Oncorhynchus mykiss (O.mykiss) (Rainbow trout) has been investigated in this study by conducting in vitro and in vivo experiments. Innate immune cells such as macrophages are one of the first cells to respond to pathogens once they breach the skin barrier, therefore the monocyte/macrophage cell line RTS-11 as well as leukocytes from the head kidney, consisting of a high percentage of phagocytic cells have been investigated. Additionally, leukocytes isolated from the peritoneal cavity as the main target for injectable vaccines have been studied in the in vitro experiments. These experiments indicate that OMVs derived from A. salmonicida are recognized by the monocyte/macrophage cell line RTS-11 as well as by leukocytes from the head kidney resulting in significant changes of the mRNA expression pattern of early inflammatory markers (IL-1β, IL-6, IL-8, IL-10, TGFβ). Having used the established peritoneal inflammation model of rainbow trout it could be shown that intraperitoneal (i.p.) vaccination of rainbow trout with OMVs results in a similar local immune response, especially in the recruitment of myeloid cells, compared to the injection of inactivated bacteria. The systemic cellular immune response differed between the two vaccine groups, even though a similar humoral immune response could be observed. Interestingly, i.p.vaccination with 10 µg of OMVs resulted in similar antibody titers as observed for fish, that were i.p. vaccinated with 108 CFU of inactivated A. salmonicida. The similar antibody titers after vaccination with OMVs might be explained by a stronger activation of CD8- T cells (likely CD4+ T cells) in the head kidney as well as in the blood in the OMV vaccinated group alone, which might result in an increased stimulation of B cells to produce antibodies.
Oral vaccination has been described as the ideal vaccination method for fish, but only few vaccines for oral application are licensed. Therefore, the established oral model for vaccination of rainbow trout with attenuated viral hemorrhagic septicemia virus (VHSV) was adapted to be used for inactivated A. salmonicida, even though initial trials indicated great similarities in the cellular response after i.p. and oral vaccination with inactivated strains of A. salmonicida, particularly in the response of the myeloid cells and lymphocytes in the target organs as well as the thrombocytes in the spleen. This could not be confirmed in a second oral vaccination trial. These results show how challenging the development of oral vaccines for fish is. The main challenge is the reproducibility of reliable results, since this is influenced by the difference in uptake of vaccine pellets or antigen degradation in the gut. Future oral vaccine trials should investigate different vaccination regimes, e.g., consecutive feeding, or a different composition of vaccine pellets, in order to further investigate the possibility of establishing an oral vaccine model for trout and so that future vaccine candidates, like OMVs, can be reliably tested in fish.
Phylogeny of the Koi herpesvirus and development of a vaccine against the Koi herpesvirus disease
(2019)
The aim of this presented dissertation was a stable, live attenuated and protective KHV usable as vaccine. Moreover this vaccine should by cost effective and easy to apply. Differentiation of infected and vaccinated animals was preferred by genetic and / or serological means. After achieving an attenuated virus, whole genome sequencing should be done to examine the genetic of the vaccine as one feature of biosafety. Besides biosafety additional knowledge on the virulence of Alloherpesviruses, especially of KHV was anticipated. Additionally the diagnostics of KHV and KHVD should be improved to increase reliability and to gain more insights into the relationship of different KHVs and hopefully to detect the source of an outbreak.