Refine
Document Type
- Doctoral Thesis (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- Antioxidans (1)
- Biomimetic membrane; cold physical plasma;membrane oxidation; lipid bilayer; electrochemistry; mass spectrometry; atomic force microscopy (1)
- Electrochemie (1)
- Elektrochemischer Sensor (1)
- Massenspektrometrie (1)
- Oxidativer Stress (1)
- Polyphenole (1)
- Radikalfänger (1)
- Reaktive Sauerstoffspezies (1)
- polycrystalline gold (1)
Institute
In an aerobic environment the occurrence of reactive oxygen species (ROS) is a common phenomenon. The diverse roles of ROS in cellular function and in diseases make them a target of interest in many research areas. Substances capable of directly or indirectly reducing the (harmful) effects of ROS are referred to as “antioxidants”. However, the term is applied miscellaneously in the chemical and the biological context to describe different attributes of a substance. In this work the potential of an electrochemical assay to detect different ROS in-vitro was explored. The method was optimized to investigate the radical scavenging activities (antioxidant potential) of trolox and different plant compounds (ascorbic acid, caffeic acid, epigallocatechin gallate, ferulic acid, kaempferol, quercetin, rutin, and Gynostemma pentaphyllum extract) in-vitro. The obtained data was compared to established antioxidant in-vitro assays. Further, the impact of the plant substances on cellular parameters was evaluated with the electrochemical assay and established cell assays.
The optimization of the electrochemical assay allowed the reproducible detection of ROS. The sensor electrode proved differently sensitive towards individual ROS species. The highest sensitivity was recorded for hydroxyl radicals while superoxide and hydrogen peroxide had little impact on the sensor. Extracellular ROS concentrations could be detected from cell lines releasing elevated ROS into the extracellular space. The antioxidant activity of the investigated plant substances could be demonstrated with all in-vitro assays applied. However, the absolute as well as the relative activity of the individual substances varied depending on the experimental parameters of the assays (pH, radical species, phase, detection method).
The plant compounds modified redox related intracellular parameters in different cell lines. However, a direct correlation between intracellular and extracellular effects of the plant compounds could not be established.
The work demonstrates the feasibility to use the electrochemical assay to sense ROS as well as to evaluate the radical scavenging activity of molecules. The in-vitro antioxidant activities demonstrated for the individual plant substances are not reliable to predict the cellular effects of the molecules.
Scholz et al. developed an electrochemical assay to study the impact of reactive species on self-assembled monolayer (SAM). The aim of this thesis is to use this electrochemical assay with gold supported lipid bilayers instead of SAM to study the effect of reactive species on model membranes that mimic oxidative damage to the biological cell membrane. Here, three questions will be addressed: I) how specific substances such as lipophilic and hydrophilic antioxidants protect a membrane from oxidative damage, II) what are the lipid oxidation products after oxidative damage of the model membrane, and III) whether oxidative damage of the model membranes causes pore formation on lipid bilayer. Electrochemistry was first used to measure the oxidative damage over the entire lipid membrane. Then, mass spectroscopy was used to characterize how lipids as the molecular building blocks of the membrane, change when exposed to reactive species. Imaging the membrane with AFM showed how oxidative damage in the model membrane alters lipid self-assembly within the supported lipid bilayer in nanometer scale. In addition, cold physical plasma (CPP) was used to produce the biological relevant reactive species. This fundamental research demonstrates the great potential of supported lipid bilayers as model membranes and cold physical plasma as a source for the production of biologically relevant reactive species to study the effect of oxidative stress on cell membranes.