Refine
Document Type
- Doctoral Thesis (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- Fernerkundung (2)
- Geophysik (2)
- Habitat (2)
- Hydroakustik (2)
- Meeresboden (2)
- Acoustic Backscatter (1)
- Benthos (1)
- Fächerecholot (1)
- Lander Experiment (1)
- Laser Line Scanning (1)
Institute
The achievement and monitoring of a good environmental status on continental shelf seas requires
the use of acoustic remote sensing techniques due to their range. The interpretation of acoustic signals
for the identification of benthic communities, however, is still in its infancy. In this thesis, the results
of two field campaigns conducted in a sandy environment off the shore of Sylt Island (North Sea)
utilizing ship- and lander-based acoustic and optical remote sensing techniques are discussed. The
objective of the thesis is a better knowledge of the impact of the polychaete Lanice conchilega on
physical seafloor properties, especially roughness at a cm to mm scale, which is relevant for
understanding acoustic scatter. The results show a clear impact of L. conchilega on roughness even in
sparse populations of less than 2% coverage. However, these sparsely populated areas could not be
reliably identified with acoustic data; a denser population of L. conchilega provided a clearer signal for
the acoustic remote sensing methods. The results are promising regarding the broader use of acoustic
remote sensing techniques for environmental monitoring in selected habitats, although the
determination of minimum population thresholds that can be identified will require further studies.
Seas and oceans are essential for the global ecosystem. Entire societies, economies and countless livelihoods rely on their good environmental status. Yet, pressures on marine environments are increasing. An extensive assessment and monitoring of marine habitats is a vital precondition for understanding these systems and their sustainable conservation. Remote sensing methods can temporally accelerate the mapping, improve the spatial resolution and support the interpretation of large areas. Hydroacoustic becomes the method of choice for areas deeper than the coastal zone as optical signals are limited by strong attenuation in the water column. Apart from depth measurements for the creation of bathymetric charts, the recording of backscatter strength is useful for the characterization of the seafloor surface. The direct influence of the inhabiting benthic community on the backscattered signal is rarely considered, although it can be utilized for the detection of benthic life. Information about habitat-specific backscatter responses or a hydroacoustic remote sensing catalog for benthic habitats is missing so far.
The multibeam echosounder (MBES) has the advantage of recording both, bathymetry and backscatter strength simultaneously with related incidence angle. Further, recent technological developments allow to change between frequencies. Angular range curves supported the quantification of backscatter strength of different frequencies. Acoustic data sets were complemented by ground truthing in form of sedimentological and biological samples as well as video profiles. Study areas were located offshore the island of Sylt in the North Sea as well as in vicinity to Oder Bank and close to the coast offshore Hohe Düne/Rostock, both in the Baltic Sea. Investigated habitats included sand areas inhabited by tubeworms, loose mussel clusters on top of sand areas, seagrass meadows, coarse sand and gravel areas, and a reef covered by mussels.
Multifrequency backscatter maps, combining frequencies between 200 kHz and 700 kHz, illustrate small-scale features at the seafloor not visible in monofrequent maps. Key habitats showed a specific backscatter response, which can partly be related to macrobenthic flora and fauna. Data sets recorded with a (partly calibrated) MBES in three different month (May, August, October) revealed that backscatter strength can further detect spatial as well as temporal habitat dynamics. Alterations in the sediment composition at the seafloor surface of the ecologically valuable coarse sand and gravel areas were caused by seasonal changes in local hydrodynamics.
A newly developed 3D seismic lander has the ability to support hydroacoustic remote sensing as an additional, non-destructive ground truthing method utilizing a high frequency of 130 kHz to image the shallow subsurface. Buried objects, e.g., stones, shells, fruit gummy worms, as well as sediment disturbances could be detected and visualized in a laboratory experiment. The 3D seismic lander is likely to improve the investigation of volume scatter contribution to backscatter strength and is potentially applicable for the imaging of bioturbation.