Refine
Year of publication
- 2019 (2)
Document Type
- Doctoral Thesis (2)
Language
- German (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- CAR (1)
- Darm (1)
- Enzyme (1)
- Medizin (1)
- Metabolismus (1)
- Nukleäre Rezeptoren (1)
- PBMCs (1)
- Pharmakologie (1)
- Targeted Proteomics (1)
- efavirenz (1)
Institute
Charakterisierung der Expression und Funktion metabolischer Enzyme im humanen intestinalen Gewebe
(2019)
Bei der Arzneimittelentwicklung liegt der Fokus nicht nur auf der Wirksamkeit und Sicherheit einer pharmakologisch aktiven Substanz, sondern auch auf einer möglichst einfachen, idealerweise oralen Applikation. Um die benötigten Wirkstoffkonzentrationen im Zielorgan zu erreichen, wird die einzunehmende Dosis eines Medikaments in Abhängigkeit der präsystemischen Elimination ermittelt. Inzwischen ist bekannt, dass nicht ausschließlich der hepatische, sondern auch der intestinale Stoffwechsel die orale Bioverfügbarkeit eines Medikaments wesentlich beeinflussen kann. Arzneistoffe, die während der Darmpassage einer starken Metabolisierung unterliegen, sind zudem prädestiniert für unerwünschte Interaktionen mit anderen Substanzen, welche die entsprechenden Stoffwechselenzyme hemmen oder induzieren. Für die Abschätzung pharmakokinetischer Parameter eines neuen Wirkstoffs sind daher Kenntnisse zur Expression sowie Funktion klinisch relevanter intestinaler Stoffwechselenzyme von Bedeutung.
Bisher publizierte Daten basieren größtenteils auf der Genexpression, obwohl aufgrund posttranskriptionaler Prozesse nicht zwingend Aussagen zur resultierenden Proteinmenge getroffen werden können. Die verfügbaren Daten zum intestinalen Proteingehalt wurden mittels immunologischer Methoden erhoben, die erhebliche Limitationen in Bezug auf Spezifität, Reproduzierbarkeit und Robustheit aufweisen. Diese Aspekte finden bei den inzwischen etablierten LC-MS/MS-basierten Targeted-Proteomics-Methoden Berücksichtigung. Dazu werden die Proteine einer Messprobe enzymatisch gespalten, um entstehende proteospezifische Peptide zur Quantifizierung der Proteine von Interesse zu nutzen.
Ein Ziel der vorliegenden Arbeit bestand in der Entwicklung und Validierung einer entsprechenden Methode zur gleichzeitigen Bestimmung von CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP3A5, UGT1A1, UGT1A3, UGT2B7 sowie UGT2B15 in biologischen Matrices, welche die aktuell gültigen Leitlinien in Bezug auf Selektivität, Linearität, Richtigkeit, Präzision und Stabilität erfüllt. Bereits bei der ersten Anwendung der Methode zur Quantifizierung der Enzyme in kommerziell erhältlichen und selbst isolierten Mikrosomen zeigte sich, welchen erheblichen Einfluss die Probenvorbereitung auf die ermittelten Proteingehalte hat.
Diese Erkenntnis wurde im Rahmen eines internationalen Projektes bestätigt, bei dem humane Leberproben desselben Ursprungs in diversen Laboren mit den dort etablierten Methoden prozessiert worden sind. Bezogen auf die eingesetzte Gewebemenge ergaben sich bei der Messung der Mikrosomen 6 - 30-fach geringere Enzymgehalte als bei der Analyse des nicht-fraktionierten Gewebes, da die subzelluläre Aufspaltung einer Probe mit erheblichen Proteinverlusten einhergeht. Folglich wurden alle weiteren Untersuchungen zur absoluten Enzymquantifizierung unter Verwendung von filterbasierten Zentrifugaleinheiten (filter aided sample preparation; FASP) mit Gesamtgewebelysatproben durchgeführt. Sowohl die optimierte Probenaufarbeitung als auch die validierte Targeted-Proteomics-Methode fanden bei der Untersuchung der Darmsegmente von 9 Spendern Anwendung, wobei jeweils Gewebe aus dem Duodenum, oberen und unteren Jejunum, Ileum sowie Colon zur Verfügung stand. Von den 13 untersuchten Enzymen wurden in allen Dünndarmabschnitten nur CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, UGT1A1, UGT1A3 und UGT2B7 nachgewiesen, deren Gehalt im Jejunum am höchsten war. Im Colon wurde auf Proteinebene keines der Metabolisierungsenzyme detektiert. Die entsprechenden Genexpressionsdaten dieser 8 Enzyme korrelieren signifikant mit den ermittelten Proteinwerten. Korrespondierend zur fehlenden Nachweisbarkeit der übrigen 5 Enzyme auf Proteinebene waren die Gene CYP2B6, CYP2C8, CYP2E1 sowie UGT2B15 nur sehr geringfügig und CYP1A2 gar nicht exprimiert.
Zur Charakterisierung der metabolischen Aktivität der intestinalen Enzyme wurde eine weitere LC-MS/MS-basierte Methode entwickelt und validiert. Als Modellsubstrate fungierten Diclofenac (CYP2C9), Omeprazol (CYP2C19), Dextromethorphan (CYP2D6), Midazolam (CYP3A), Ezetimib (UGT1A) und Naloxon (UGT2B7). Die begrenzte Verfügbarkeit des intestinalen Gewebes sowie dessen sehr geringer mikrosomaler Proteingehalt stellten besondere Anforderungen an die Sensitivität der Methode. Ihre Eignung zur Charakterisierung der intestinalen Metabolisierungsaktivität wurde bei der Anwendung auf ein jejunales Mikrosomen-Gemisch gezeigt.
Die im Rahmen dieser Arbeit generierten Daten zur Expression klinisch bedeutsamer Metabolisierungsenzyme entlang des humanen Darms tragen zu einem besseren Verständnis des intestinalen First-Pass-Metabolismus bei. Diese Kenntnisse können sowohl bei der Entwicklung neuer Arzneistoffe als auch für die Erstellung von Physiologie-basierten pharmakokinetischen Modellen (PBPK-Modellen) nützlich sein, um die orale Bioverfügbarkeit sowie das Interaktionspotential pharmakologisch aktiver Substanzen abzuschätzen.
Die Bedeutung der Einschätzung von Interaktionen verschiedener Medikamente und der hiermit potentiell einhergehenden Nebenwirkungen nehmen aufgrund der stetigen Entwicklung neuer medikamentöser Therapieansätze und der hierdurch bedingt vermehrt auftretenden Polypharmazie kontinuierlich zu. Die Grundlage für das Verständnis dieser Interaktionen bilden die Pharmakokinetik und die Pharmakodynamik. Wichtige Einflussfaktoren im Hinblick auf die Regulation dieser beiden Prozesse sind die nukleären Rezeptoren CAR und PXR, die als ligandenabhängige Transkriptionsfaktoren entsprechend der anfallenden Metaboliten den Metabolismus mitbestimmen. Ein bekannter Induktor von CAR mit seinen Zielgenen in der Pharmakokinetik ist Efavirenz – ein wichtiger Bestandteil der HIV- Therapie. Hierauf basierend wurde in einer klinischen Studie mit 12 Probanden u.a. Gewebe (PBMCs und Intestinum) unter der kontrollierten Gabe von Efavirenz mit Ezetimib untersucht. Letzteres Medikament wurde zum einen als Parameter für den Metabolismus der zahlreichen Zielgene von CAR und zum anderen als eine mögliche Option zur Behandlung der Dyslipidämie – der Entstehung einer Dysbalance als vermeintliche Nebenwirkung von Efavirenz – eingesetzt. Diese klinische Studie ergab, dass Efavirenz keine Regulation im Intestinum auf die mRNA bewirken konnte, jedoch vereinzelt Induktionen auf Proteinebene. Im Modell der Caco2-Zellen ließ sich prinzipiell nach Exposition von Efavirenz eine Induktion feststellen. Auch im Kompartiment der PBMCs ließ sich generell – innerhalb der Studie und auch in vitro– eine Induktion detektieren. Dabei konnte jedoch weder eine relevante pharmakokinetische noch eine pharmakodynamische Interaktion zwischen Efavirenz und Ezetimib eindeutig nachgewiesen werden. Insgesamt scheinen gleiche Zielgene von CAR abhängig vom Kompartiment regulationsfähig zu sein. Ob letztendlich die Distribution von Efavirenz über die Induktion oder auch das Kompartiment und dessen Umstände an sich die Induktion beeinflussen bleibt offen. Die Feststellung grundlegender Schlussfolgerungen ist somit aufgrund der derzeit noch unklaren Confounder noch nicht möglich, weshalb weitere komplementäre Forschungsvorhaben erforderlich sind, um zusätzliche Erkenntnisse zu erzielen.