Refine
Year of publication
- 2018 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Keywords
- Bathymodiolus (1)
- Bathymodiolus symbiosis (1)
- Deep-sea hydrothermal vents (1)
- host-symbiont (1)
- interactions (1)
- metabolic interactions (1)
- proteomics (1)
- symbiosis (1)
- vent (1)
Institute
Chemosymbiosis in marine bivalves – unravelling host-symbiont interactions and symbiotic adaptions
(2018)
Symbiosis essentially forms the cornerstone of complex life on earth. Spearheading
symbiosis research in the last few decades include the exploration of diverse mutualistic
animal-bacterial associations from marine habitats. Yet, many facets of symbiotic
associations remain under-examined. Here we investigated marine bivalves of the genera
Bathymodiolus and Codakia, inhabiting hydrothermal vents and shallow water
ecosystems, respectively, and their bacterial symbionts. The symbionts reside
intracellularly within gill epithelia and supply their host with chemoautotrophically fixed
carbon. They oxidize reduced substrates like sulfide (thiotrophic symbionts) and methane
(methanotrophic symbionts) from surrounding fluids for energy generation. The nature of
interactions between host and symbiont at the metabolic and physical level, as well as
between the holobiont and its environment remain poorly understood. In vitro cultivations
of both symbiont and host are difficult till date, hampering the feasibility of targeted
molecular investigations.
We bypassed culture-based experiments by proteogenomically investigating physically
separated fractions of host and symbiont cell components for the bivalves Bathymodiolus
azoricus, Bathymodiolus thermophilus and Codakia orbicularis. Using these
enrichments, we sequenced the symbionts’ genomes and established semi-quantitative
host-symbiont (meta-) proteomic profiles. This combined approach enabled us to resolve
symbiosis-relevant metabolic pathways and adaptations, detect molecular factors
mediating physical interactions amongst partners and to understand the association of
symbiotic traits with the environmental factors prevailing within habitats of the respective
bivalve.
Our results revealed intricate metabolic interdependence between the symbiotic partners.
In Bathymodiolus, these metabolic interactions included (1) the concentration of essential
substrates like CO2 and thiosulfate by the host for the thiotrophic symbiont, and (2) the
host’s replenishment of essential TCA cycle intermediates for the thiotroph that lacks
biosynthetic enzymes for these metabolites. In exchange (3), the thiotroph compensates
the host’s putative deficiency in amino acid and cofactor biosynthesis by cycling aminoacids
derived from imported precursors back to the host. In case of Codakia orbicularis,
the symbionts may metabolically supplement their host with N-compounds derived from
fixation of molecular nitrogen, a trait that was hitherto unknown in chemosynthetic
thiotrophic symbionts.
Individual proteogenomic investigations of the bivalves Bathymodiolus azoricus and
Bathymodiolus thermophilus showed that their symbionts are able to exploit a multitude
of energy sources like sulfide, thiosulfate, methane and hydrogen to fuel chemosynthesis.
The bivalves and their thiotrophic symbionts, however, are particularly adapted to
thiosulfate-utilization, as indicated by mitochondrial production and concentration of
thiosulfate by host and dominant expression of thiosulfate oxidation enzymes in the
symbiont. This may be advantageous, because thiosulfate is less toxic to the host than
sulfide. The central metabolic pathways for energy generation, carbon and nitrogen
assimilation and amino acid biosynthesis in thiotrophic symbionts of both Bathymodiolus
host species are highly conserved. Expression levels of these pathways do, however, vary
between symbionts of both species, indicating differential regulation of enzyme synthesis,
possibly to accommodate differences in host morphology and environmental factors.
Systematic comparison of symbiont-containing and symbiont-free sample types within
and between B. azoricus and B. thermophilus revealed the presence of ‘symbiosisspecific’
features allowing direct host-symbiont physical interactions. Host proteins
engaged in symbiosis-specific functions include 1) a large repertoire of host digestive
enzymes predominant in the gill, possibly facilitating symbiont population control and
carbon acquisition via direct enzymatic digestion of symbiont cells and 2) a set of host
pattern-recognition receptors, which may enable the host to selectively recognize
pathogens or even symbionts “ripe” for consumption. Symbiont proteins engaged in
symbiosis-specific interactions included 3) an enormous set of adhesins and toxins,
putatively involved in symbiont colonization, persistence and host-feeding.
Bathymodiolus symbionts also possess repertoires of CRISPR-Cas and restrictionmodification
genes for phage defense that are unusually large for intracellular symbionts.
Genomic and proteomic comparisons of thiotrophic symbionts of distinct Bathymodiolus
host species from different vent sites revealed a conserved core genome but divergent
accessory genomes. The B. thermophilus thiotroph’s accessory genome was notably more
enriched in genes encoding adhesins, toxins and phage defense proteins than that of other
Bathymodiolus symbionts. Phylogenetic analyses suggest that this enrichment possibly
resulted from horizontal gene acquisition followed by multiple internal gene duplication
events. In others symbionts, these gene functions may be substituted by alternate
mechanisms or may not be required at all: The methanotrophic symbionts of B. azoricus,
for example, has the genetic potential to supplement phage defense functions. Thus, the
accessory genomes of Bathymodiolus symbionts are species- or habitat-associated,
possibly facilitating adaptation of the bivalves to their respective micro- and macroenvironments.
In support of this, we show that symbiont biomass in B. thermophilus,
which hosts only one thiotrophic symbiont phylotype, is considerably higher than in B.
azoricus that hosts thiotrophic and methanotrophic symbionts. This suggests that different
symbiont compositions in each species produce distinct microenvironments within the
holobiont.
Our study presents an exhaustive assessment of the genes and proteins involved in this
bivalve-microbe interaction, hinting at intimate host-symbiont interdependencies and
symbiotic crosstalk between partners. The findings open novel prospects for
microbiologists with regard to mechanisms of host-symbiont interplay within highly
specialized niches, origin and distribution of prokaryote-eukaryote interaction factors
across both mutualistic and pathogenic associations.