Refine
Document Type
- Doctoral Thesis (7)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
- Streptococcus pneumoniae (3)
- Infektionen (2)
- Molekularbiologie (2)
- Proteomics (2)
- Essential Oil (1)
- Human Oral Microbiome (1)
- Iron limitation (1)
- Lactoperoxidase (1)
- Listerine (1)
- Lunge (1)
Staphylococcus aureus is one of the commonly encountered bacteria of the human microbiome. Although mostly a seemingly harmless commensal microbe, S. aureus can act as an invasive pathogen with seriously devastating effects on its host’s health and wellbeing. A wide range of infections caused by this bacterium has been reported to affect diverse parts of the human body, including the skin, soft tissues and bones, as well as important organs like the heart, kidneys and lungs. Particularly, S. aureus is infamous for being a major causative agent of respiratory tract infections that may escalate up to necrotizing pneumonia. Due to its clinical relevance, this pathogen has been intensively studied for many years. Nonetheless, further research in this field is still needed, because of the high capacity of S. aureus to evolve drug resistance, its high genomic plasticity and adaptability and, not in the last place, the plethora of niches within the human body where it can thrive and survive. In this regard, there are still many uncertainties concerning the specific adaptations carried out by S. aureus during colonization and infection of the human body, the transition between both stages, and upon the invasion of different types of host cells. To shed more light on some of these adaptations, the research described in this thesis has employed in vitro models of infection that mimic particular conditions during the infectious process with special focus on the lung epithelium. The adaptations displayed by S. aureus were monitored using advanced proteomics. Furthermore, the analyses documented in this thesis included S. aureus strains with diverse backgrounds and epidemiology to take into account the genetic diversity encountered in this species.
The bacterium Staphylococcus aureus is a notorious pathogen that causes dangerous and difficult-to-treat infections. This applies especially to methicillin-resistant S. aureus, better known as MRSA. MRSA infections were originally associated with healthcare settings as a consequence of clinical antibiotic therapy. However, in recent years MRSA infections have become more common among healthy individuals in the community. The community-associated (CA-)MRSA lineages are generally more aggressive than hospital-associated (HA-) lineages. Therefore, it is alarming that such CA-MRSA lineages are now emerging in hospitals. This raises the fundamental question of how CA-MRSA adapts to this new niche. Further, since the originally distinguishing features of CA- and HA-MRSA are losing discriminative value, it is important from a healthcare perspective to identify novel distinctive markers for early recognition and elimination of hospital-adapted CA-MRSA. In the present PhD research, these challenges were tackled with a ‘multi-omics’ approach focused on the USA300 lineage of MRSA, originally identified as CA, but now also causing hospital outbreaks. The results show that hospital-adapted USA300 isolates produce an altered spectrum of virulence factors, changed their metabolism, and exploit human immune cells as a protective environment against antibiotics. Importantly, hospital-adapted CA-MRSA strains can be recognized through distinctive patterns of gene expression and secreted virulence factors. Altogether, these observations show that the epidemic behaviour of MRSA is a multi-factorial trait, and they provide new insights into the missing links between epidemiology and pathophysiology of S. aureus. Moreover, they highlight the benefits of multi-omics technologies for protecting patients and frail individuals against the aggressive CA-MRSA.
Streptococcus pneumoniae is a commensal of the human upper respiratory tract and moreover, the
causative agent of several life-threatening diseases including pneumonia, sepsis, otitis media, and
meningitis. Due to the worldwide rise of resistance to antibiotics in pneumococci the understanding
of its physiology is of increasing importance. In this context, the analysis of the pneumococcal
proteome is helpful as comprehensive data on protein abundances in S. pneumoniae may provide
an extensive source of information to facilitate the development of new vaccines and drug
treatments.
It is known that protein phosphorylation on serine, threonine and tyrosine residues is a major
regulatory post-translational modification in pathogenic bacteria. This reversible post-translational
modification enables the translation of extracellular signals into cellular responses and therewith
adaptation to a steadily changing environment. Consequently, it is of particular interest to gather
precise information about the phosphoproteome of pneumococci. S. pneumoniae encodes a single
Serine/Threonine kinase-phosphatase couple known as StkP-PhpP.
To address the global impact and physiological importance of StkP and PhpP which are closely
linked to the regulation of cell morphology, growth and cell division in S. pneumoniae, proteomics
with an emphasis on phosphorylation and dephosphorylation events on Ser and Thr residues was
applied. Thus, the non-encapsulated pneumococcal D39Δcps strain (WT), a kinase (ΔstkP) and
phosphatase mutant (ΔphpP) were analyzed in in a mass spectrometry based label-free
quantification experiment. The global proteome analysis of the mutants deficient for stkP or phpP
already proved the essential role of StkP-PhpP in the protein regulation of the pneumococcus.
Proteins with significantly altered abundances were detected in diverse functional groups in both
mutants. Noticeable changes in the proteome of the stkP deletion mutant were observed in
metabolic processes such as “Amino acid metabolism” and also in pathways regulating genetic
and environmental information processing like “Transcription” and “Signal transduction”.
Prominent changes in the metabolism of DNA, nucleotides, carbohydrates, cofactors and vitamins
as well as in the categories “Transport and binding proteins” and “Glycan biosynthesis and
metabolism” have been additionally detected in the proteome of the phosphatase mutant. Still, the
quantitative comparison of WT and mutants revealed more significantly altered proteins in ΔphpP
than in ΔstkP. Moreover, the results indicated that the loss of function of PhpP causes an increased
abundance of proteins in the pneumococcal phosphate uptake system Pst. Furthermore, the
obtained quantitative proteomic data revealed an influence of StkP and PhpP on the twocomponent
systems ComDE, LiaRS, CiaRH, and VicRK.
Recent studies of the pneumococcal StkP/PhpP couple demonstrated that both proteins play an
essential role in cell growth, cell division and separation. Growth analyses and the phenotypic
characterization of the mutants by electron-microscopy performed within this work pointed out
that ΔphpP and ΔstkP had different growth characteristics and abnormal cell division and cell
separation. Nevertheless, the morphological effects could not be explained by changes in protein
abundances on a global scale. So, the in-depth analysis of the phosphoproteome was mandatory
to deliver further information of PhpP and StkP and their influence in cell division and
peptidoglycan synthesis by modulating proteins involved in this mechanisms.
For more detailed insights into the activity, targets and target sites of PhpP and StkP the advantages
of phosphopeptide enrichment using titanium dioxide and spectral library based data evaluation
were combined. Indeed, the application of an adapted workflow for phosphoproteome analyses
and the use of a recently constructed broad spectral library, including a large number of
phosphopeptides (504) highly enhanced the reliable and reproducible identification of
phosphorylated proteins in this work.
Finally, already known targets and target sites of StkP and PhpP, detected and described in other
studies using different experimental procedures, have been identified as a proof of principle
applying the mass spectrometry based phosphoproteome approach presented in this work.
Referring to the role of StkP in cell division and cell separation a number of proteins participating
in cell wall synthesis and cell division that are apparently phosphorylated by StkP was identified.
In comparison to StkP, the physiological function and role of the co-expressed phosphatase PhpP
is poorly understood. But, especially the list of previously unknown putative target substrates of
PhpP has been extended remarkably in this work. Among others, five proteins with direct
involvement in cell division (DivIVA, GpsB) and peptidoglycan biosynthesis (MltG, MreC, MacP)
can be found under the new putative targets of PhpP.
All in all, this work provides a complex and comprehensive protein repository of high proteome
coverage of S. pneumoniae D39 including identification of yet unknown serine/threonine/tyrosine
phosphorylation, which might contribute to support various research interests within the scientific
community and will facilitate further investigations of this important human pathogen.
Hintergrundinformationen: Bakterien gehören zu den ältesten Lebensformen und sind ein elementarer Bestandteil aller ökologischen Lebensräume auf der Erde. Der Mensch als Holobiont ist ein eigenständiges Ökosystem mit einer Vielzahl von ökologischen Nischen und einer großen bakteriellen Vielfalt. Durch innere oder äußere Einflüsse kann es zu Veränderungen der Umweltbedingungen kommen, die eine veränderte Zusammensetzung des Mikrobioms zur Folge haben. Eine solche Dysbiose wirkt sich auf den Gesundheitszustand des Menschen aus und kann zu schweren Krankheiten führen. Das orale Mikrobiom gehört mit zu den komplexesten Mikrobiomen des Menschen. Es bildet eine natürliche Barriere gegen Krankheitserreger und beugt somit u.a. lokalen Krankheiten wie Karies oder Parodontitis vor. Die Metaproteomik ermöglicht es, die exprimierten Proteine des Mikrobioms und deren Interaktion mit dem Wirt zu untersuchen. Diese Technologie überwindet somit die Beschränkung auf Laborkulturen und ermöglicht die Untersuchung des Mikrobioms direkt in seinem natürlichen Lebensraum. Die Metaproteomik bietet eine Reihe von Instrumenten zur Vertiefung des Verständnisses des oralen Mikrobioms hinsichtlich des Gesundheitszustandes des Menschen.
Ziele: Ein Ziel dieser Dissertation war es einen Arbeitsablauf für die Durchführung von Metaproteomstudien des oralen Mikrobioms zu erarbeiten, beginnend bei der Probensammlung über die Präparation der Proben für die Massenspektrometrie bis hin zur bioinformatischen Auswertung. Diesen Arbeitsablauf galt es für das Mikrobiom des Speichels sowie für die Biofilme auf der Zunge und des supragingivalen Plaques zu etablieren bzw. zu adaptieren. Darauf aufbauend wurden Metaproteomstudien durchgeführt, um die drei Mikrobiome bei gesunden Probanden hinsichtlich ihrer exprimierten Proteine, deren metabolischer Bedeutung und Interaktionen mit dem Wirt sowie deren taxonomische Zuordnung zu studieren.
Studiendesign: Die Dissertation umfasst drei Studien mit drei unterschiedlichen Kohorten. Allen Studien ist gemein, dass die Kohorten sich aus oral gesunden Probanden im Alter von 20-30 Jahren zusammensetzten.
In der ersten Studie verglichen wir die Salivette® sowie den Paraffinkaugummi anhand von fünf Probanden, um die effektivste Methode zur Sammlung von Speichel für Metaproteomstudien zu identifizieren.
In der zweiten Studie wurden die Mikrobiome von Speichel und Zunge anhand von 24 Probanden miteinander verglichen und dafür eine Auswertestrategie entwickelt, um der Komplexität dieser Metaproteomstudie gerecht zu werden.
Im Rahmen unserer dritten randomisierten Einzelblindstudie, die auf einem Cross-over-Design basierte, erhielten 16 Probanden vier unterschiedliche lokale Behandlungsschemata, um deren Auswirkung auf das Plaque-Mikrobiom zu untersuchen. Die Behandlungen bestanden aus zwei Lutschtabletten, die Bestandteile des Lactoperoxidase-Systems in unterschiedlichen Konzentrationen enthielten, einer Lutschtablette mit einem Placebo-Wirkstoff sowie Listerine® Total Care™ Mundspülung als Positivkontrolle.
Alle Proben wurden, basierend auf einem Bottom-Up-Ansatz, unter Verwendung von nano LC-MS/MS Massenspektrometern in einer datenabhängigen Messstrategie (DDA, data- dependant acquisition mode) vermessen. Die bioinformatische Auswertung erfolgte für die erste Studie mit Hilfe der Proteome Discoverer Software. Für die Studien zwei und drei wurde die Trans-Proteomic Pipeline eingesetzt. Die taxonomische sowie funktionelle Zuordnung der identifizierten Proteine erfolgte für alle Studien anhand der Prophane Software.
Ergebnisse:
Für den Paraffinkaugummi konnten wir mit 1.005 bakteriellen Metaproteinen dreimal so viele Metaproteine identifizieren im Vergleich zur Salivette® mit 313 Metaproteinen. 76,5 % der Metaproteine der Salivette® wurden ebenfalls mit dem Paraffinkaugummi gefunden. Insgesamt wurden 38 Genera und 90 Spezies identifiziert, wovon 13 Genera und 44 Spezies nur mit dem Paraffinkaugummi identifiziert werden konnten. Die größte funktionelle Diversität wurde ebenfalls mit dem Paraffinkaugummi detektiert.
Das Metaproteom des Speichel- und Zungen-Mikrobioms basiert auf 3.969 bakteriellen Metaproteinen sowie 1.857 humanen Proteinen. Die Anzahl der nur für das Zungen-Mikrobiom identifizierten Metaproteine, war doppelt so hoch, im Vergleich zum Speichel.
Die Metaproteine konnten 107 Genera sowie 7 Phyla zugeordnet werden. Funktionell wurden für das Speichel-Mikrobiom signifikant höhere Metaproteinabundanzen für die Zellmotilität gefunden. Beim Zungen-Mikrobiom hingegen wiesen die Metaproteine der Biosynthese von sekundären Metaboliten, Signaltransduktion oder der Replikation höhere Abundanzen auf.
Im Rahmen der Plaque-Studie identifizierten wir durchschnittlich 1.916 (± 465) bakterielle Metaproteine je Probe, die wir taxonomisch und funktionell 116 Genera sowie 1.316 Proteinfunktionen zuordnen konnten. Die Plaque inhibierende Wirkung von Listerine® zeigte sich durch eine Reduktion der Metaproteinidentifikation von durchschnittlich 23,5 % nach der Behandlung. Darüber hinaus zeigte die Mehrheit der bakteriellen Metaproteine reduzierte relative Abundanzen während für die Metaproteine humanen Ursprungs eine Erhöhung der Proteinabundanzen gegenüber der Kontrolle vor Behandlung zu verzeichnen war. Aus funktioneller Sicht waren insbesondere metabolische Prozesse, welche für das Zellwachstum und die Zellteilung wichtig sind, betroffen. Im Gegensatz dazu erhöhten sich durch die LPO Lutschtabletten sowohl die Identifikation der Metaproteine als auch die relative Abundanz für die Mehrheit der Proteine. Nach den durch die Metaproteomdaten erhaltenen funktionellen Informationen liegen Hinweise für einen wachsenden Biofilm vor. Die Metaproteine, die eine erhöhte Abundanz nach Behandlung mit den LPO-Dragees zeigten, wurden taxonomisch hauptsächlich Erst- (S. gordonii) und Zweitbesiedlern (F. nucleatum) sowie Bakterien zugeordnet, die einem gesunden Biofilm zuträglich sind.
Fazit: Im Rahmen dieser Dissertation wurde ein vollständiger Metaproteom Arbeitsablauf von der Probensammlung, über die Probenpräparation bis hin zu Datenanalyse für das Speichel-, Zungen- und Plaque-Mikrobiom erarbeitet. In drei Studien konnten wir dessen Anwendbarkeit demonstrieren und erreichten vergleichbare Ergebnisse zu anderen Metaproteomstudien, beispielsweise bezüglich der Proteinidentifikation. Für die Sammlung von Speichelproben stellte sich der Paraffinkaugummi für Metaproteomstudien als die Methode der Wahl heraus. Für das Zungen-Mikrobiom veröffentlichten wir die ersten Metaproteomdaten. Darüber hinaus publizierten wir die erste Metaproteomstudie, welche die beiden Mikrobiome von Speichel und Zunge miteinander vergleicht. Hinsichtlich des Plaque-Mikrobioms handelte es sich ebenfalls um die erste Metaproteomstudie, die ein
anerkanntes und etabliertes zahnklinisches Modell mit den Vorzügen der Metaproteomiks verbindet. Die Ergebnisse liefern erste Daten, um (auf längere Sicht gesehen) ein Produkt zur täglichen Mundhygiene entwickeln zu können, welches die bakterielle Zusammensetzung des Plaque-Biofilms positiv beeinflusst.
Streptococcus pneumoniae is one of the leading human pathogen causing morbidity and mortality worldwide. The pneumococcus can cause a variety of different diseases ranging from mild illnesses like otitis media and sinusitis to life-threatening diseases such as pneumonia, meningitis and sepsis. Mostly affected are infants, elderly and immune-suppressed patients. Although, there are vaccines against pneumococci available, still hundreds of thousands of people got infected each year. These vaccines are targeting the pneumococcal polysaccharide capsule. Because of the high number of different serotypes, it is not possible to generate a vaccine against all present serotypes. In the last years a shift to non-vaccine serotypes was noticed. This strengthens the need for the development of vaccines which do not target polysaccharides. Thus, proteins came into focus as potential new vaccine candidates or targets for drug treatment, because several proteins are highly conserved among different strains or even genera. Proteome analyses can give insights into the protein composition in a certain state of a bacterium. So, targets can be identified, which are especially expressed under infection-relevant conditions. Iron limitation is one of these conditions and the knowledge on iron acquisition in pneumococci is still limited. Iron is an essential trace element and as redox-active catalyst or as cofactor involved in various key metabolic pathway in nearly all living organisms and thus also in bacteria. For instance, iron is necessary during biosynthesis of amino acids and in electron transport as well as in DNA replication. Within the human host iron is extremely limited due to its high insolubility under physiological conditions, which is part of the nutritional immunity of its human host. Hence, bacteria had to evolve mechanism to overcome iron starvation. In this thesis the adaptation process triggered by iron limitation in the S. pneumoniae serotype 2 strain D39 was investigated in a global mass spectrometry-based proteome analysis.
In preceding growth experiments the pneumococcal growth was adapted to the needs of proteomic workflows. In order to investigate the pneumococcal response to iron limitation, the organic iron-chelating agent 2,2’-bipyridine (BIP) was applied. For the quantification of changes in protein abundances comparing stress to control conditions the very reliable and robust metabolic labeling technique Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) was used. This method requires the bacterial cultivation in a chemically defined medium, for which reason modified RPMI 1640 medium was chosen. A pooled protein extract with heavy labeled amino acids was applied as an internal standard, which included proteins expressed under control and stress condition, to control, BIP and BIP-iron-complex (BIP control experiment) samples. Samples were analyzed by liquid chromatography coupled directly to a tandem mass spectrometer. It is described that under iron-restricted conditions proteins associated to pathogenesis are higher abundant in pathogenic bacteria like Staphylococcus aureus. Hence, similar observations were expected also for the proteomic adaptation of S. pneumoniae, but the first results showed a reduction in protein abundance of virulence factors. In order to explain these results inductively-coupled-plasma mass spectrometry was executed to determine the iron concentration of chemically defined medium (CDM) used in this experiment. The analysis revealed a relatively low iron concentration of approximately 190 µg l-1. Therefore, the iron concentration of the complex medium THY, in which pneumococci are usually grown, was investigated. THY contains four-fold (740 µg l-1) more iron than the CDM. Subsequently, an additional iron limitation approach was carried out in THY. As SILAC is not applicable in complex media like THY, MaxLFQ was applied as quantification method in this case. Because two different media were used, an additional comparative proteome analysis with regard to the two investigated media was executed.
Comparing the protein composition in both cultivation media it became clear that pneumococci exhibit a totally different proteome depending on the medium. Major differences were found in metabolisms of amino acids, vitamins and cofactors as well as in pathogenesis-associated proteins. These differences have to be taken into account during the analyses of both iron limitation approaches. Overall, more proteins were identified and quantified in CDM samples. The pneumococcal adaptation to iron limitation in both media was different; especially, the alterations in protein abundances of virulence factors. In contrast to the iron limitation in CDM, proteins involved in pathogenesis were higher abundant under iron limitation in THY, which was the expected result. Because of proteomic changes of cell division and lipid metabolism involved proteins in iron-limited pneumococci in CDM, electron microscopic pictures were taken in order to proof cell morphology. The pictures showed an impaired cell division in iron-limited CDM, but not in THY medium. However, both datasets have similarities as well. Thus, the iron uptake protein PiuA is strongly increased in iron-restricted conditions and the abundance of the iron storage protein Dpr is significantly decreased in both datasets. Notably, PiuA and Dpr seem to have important roles during the pneumococcal adaptation to iron-restricted environments.
One the basis of these results, it could be shown that the proteomic response of pneumococci to iron limitation is strongly dependent to the initial iron concentration of the environment. Hence, pneumococci will adapt differently to varying niches and thus potential vaccine candidates should be expressed independently of the localization within the human host.
Streptococcus pneumoniae colonizes asymptomatically the upper respiratory tract as a commensal, but has also a high virulence potential and can leave this ecological niche, thereby spreading to the lungs and blood. During this process, pneumococci must adapt to changing external environmental conditions and parameters such as nutrient availability, temperature, or oxygen levels. The transmission of these signals into the bacterial cell interior occurs via the process of signal transduction, which ultimately results in controlled differential gene expression. The most commonly strategy for signal transduction is the use of two-component regulatory systems (TCS), consisting of a membrane-bound histidine kinase as a sensor and a cytoplasmic response regulator that binds to the promoter region of its target genes and interferes with gene expression.
In this study the regulatory impact and influence of the TCS08 and TCS09 on the phenotype and pathophysiology of S. pneumoniae were investigated using two different serotypes
(serotype 2: D39 and serotype 4: TIGR4). For all functional assays, single (Δrr08/Δrr09 or Δhk08/Δhk09) and double (Δtcs08 or Δtcs09) mutants that were constructed by insertion-deletion mutagenesis, were applied.
In the first study a comparative transcriptome analysis using RNA-sequencing was conducted with our tcs09-mutants and the parental wild-type D39. The data indicated upregulation of the aga operon, which is related to galactose metabolism, and downregulation of the regulator AgaR, particularly in the absence of HK09. Interestingly, encapsulated and nonencapsulated hk09-mutants in D39 showed significant growth defects when galactose was used as sole carbohydrate source. Electron microscopy revealed morphological changes such as an increased number of membrane vesicles and cell wall degradation for the nonencapsulated hk09- and tcs09-mutants of strain D39. An increased capsule production was indicated for the encapsulated hk09- and tcs09-mutants in D39. The latter two mutants as well as the encapsulated rr09-mutant also showed altered colony morphology. While D39Δhk09 formed only opaque colonies, the mutants D39Δrr09 and D39Δtcs09 showed increased numbers of transparent colonies. In a Triton X-100 induced autolysis assay and in the presence of oxidative stress, a negative effect of the morphological changes of D39ΔcpsΔhk09 and D39ΔcpsΔtcs09 on their survivability was demonstrated. In conclusion, we observed that TCS09 in S. pneumoniae D39 is important for its fitness through regulation of carbohydrate metabolism. This indirectly influences cell wall integrity and capsular polysaccharide amount via other regulatory mechanisms, which ultimately affects stress tolerance.
In a second study, we investigated the virulence potential of TCS09 in pneumococcal strain TIGR4. In vitro growth analyses in complex medium showed no effect after loss of function of TCS09 on pneumococcal fitness. In contrast, using the disaccharides lactose and sucrose in chemically defined medium, an extended lag phase of tcs09-mutants was monitored. To assess changes of virulence factor expression, immunoblots were applied to demonstrate the abundance of various essential virulence factors of S. pneumoniae. The results revealed a decreased amount for RrgB, which is the backbone pilus component of type 1 pili, in the hk09-mutant. Field emission scanning electron microscopy and transmission electron microscopy images were applied to study alterations of the bacterial cell shape. The illustrations by FESEM and TEM showed no effect of TCS09-deletion on pneumococcal cell morphology. Cell culture-based infection analyses revealed a similar adhesion capacity of the parental strain and isogenic mutants to lung epithelial cells. However, phagocytosis assays indicated a significantly increased killing rate of intracellular TIGR4ΔcpsΔtcs09, when compared to the isogenic parental strain. In experimental mouse infection models of acute pneumonia and systemic infection the tcs09-mutants were not attenuated. However, to decipher in more detail differences between the wild-type and tcs09-mutants, in vivo co-infection were performed, which highlighted a significantly lower bacterial load of TIGR4luxΔhk09 and TIGR4luxΔtcs09 especially in the lungs, blood, and brain after 48 h. In conclusion, the TCS09 in TIGR4 is necessary for maintaining metabolic fitness, which in turn contributes to dissemination in the host.
In the third study, the influence of TCS08 on gene expression and metabolic and pathophysiological processes of S. pneumoniae was analyzed. In particular, differential gene expression in the hk08-mutant of TIGR4 was detected using microarray and qPCR. The transcriptome analysis revealed a downregulation of cellobiose specific phosphotransferase systems as well as an upregulation of the fab operon, arc operon, and psa operon. These operons encode proteins involved in fatty acid biosynthesis, arginine catabolism, and manganese uptake, respectively. Furthermore, we measured a downregulation of pilus 1 genes in TIGR4ΔcpsΔtcs08 and an increased expression of pavB in TIGR4ΔcpsΔhk08. These data were confirmed by immunoblotting and surface localization studies. Using in silico analysis, a SaeR-like binding motif was identified in the promoter region of pavB. Furthermore, the impact of TCS08 on pneumococcal virulence was investigated in vivo using the acute pneumonia and sepsis models. These models showed a strain-dependent effect of the single TCS08 component deletions between D39 and TIGR4 pneumococci. Whereas loss of HK08 or TCS08 in D39 attenuated the mutants in the pneumonia model, loss of RR08 in TIGR4 was responsible for a similar effect. In contrast, loss of HK08 in TIGR4 promoted increased virulence in the pneumonia and sepsis model. Overall, these data indicate that TCS08 is involved as key player in bacterial fitness during host colonization.
Mechanically ventilated patients are at risk of ventilator-associated pneumonia, a serious infection of the lungs. Not every ventilated patient develops pneumonia due to a combination of the protective layer of mucus in the airways, the immune system and prophylactic antibiotic therapy. To date, only little was known about the antimicrobial factors produced by humans that protect the lungs against infection. Research described in this thesis was therefore aimed at investigating to what extent the lungs of ventilated patients can inhibit the growth of bacteria, the major causative agent of pneumonia Streptococcus pneumoniae in particular. To this end, the accumulated mucus in the patients’ lungs, sputum, was investigated. The most important conclusion was that sputum can indeed possess antimicrobial activity, explained either by a combination of antibiotics and S. pneumoniae-specific antibodies, or by the innate immune defenses. Thus, sputum may serve as a valuable source of information to unravel the complex interactions between the human host, antimicrobial factors and the microbiome of the lower respiratory tract. A possible consequence of pneumonia is the dissemination of bacteria from the lungs to the bloodstream and the brain, which may lead to meningitis. This thesis describes how this process takes place, and how the so-called choline-binding protein CbpL contributes to invasive pneumococcal infections. In addition, possible future approaches to prevent meningitis caused by this bacterium are proposed.