Refine
Document Type
- Doctoral Thesis (12)
Language
- English (12)
Has Fulltext
- yes (12)
Is part of the Bibliography
- no (12)
Keywords
The proteasome is a major part of the ubiquitin-proteasome-system playing an important role in cell homeostasis due to its protein quality control function. Moreover, the proteasome is involved in cell cycle regulation and in the regulation of transcription factors. Upon induction of interferons, or treatment with lipopolysaccharides, an isoform of the standard-proteasome is composed, named immunoproteasome (i-proteasome). The i-proteasome is constitutively expressed in immune cells and deficiency of proteolytic subunits of this multiprotein complex has been associated with a poor outcome during infectious diseases. I-proteasome-deficiency has been shown to result in reduced MHC class I presentation. Using mice which are deficient for all three proteolytic active subunits LMP2, MECL-1 and LMP7, we could demonstrate that i-proteasome-deficiency lead to an altered recruitment of immune cells to the CNS when challenged with the intracellular parasite Toxoplasma gondii, resulting in increased frequencies of neutrophils and other cells of myeloid origin. The shift to reduced frequencies of CD45highCD11blow lymphocytes can be further explained by a decreased migratory capacity of i-proteasome-deficient CD8+ T cells. In contrast to previous studies using other pathogens, effector function of CD8+ as well as CD4+ T cells, measured by frequencies of IFNγ, TNF, IL-2 and granzyme B producing cells, were not impaired in these mice, whereas induction of CD4+ Tregs was strongly reduced. In addition, we found that parasite control was comparable to control mice and that i-proteasome deletion caused an overall pro-inflammatory cytokine milieu within the brain. Our results indicate that i-proteasome-deficiency lead to prolonged tissue inflammation during T. gondii infection which could be an explanation for the more severe course of disease observed in these mice.
The Src homology domain containing phosphatase 2 (SHP2) is a tyrosine phosphatase modulating several signaling pathways and therefore has an influence in cell cycle, differentiation, proliferation and cell activation. However, SHP2 is assumed to play a negative role during T-cell activation as the phosphatase has been shown to inhibit T-cell receptor-induced signaling cascades. Although, various gain-of-function mutations in the SH2 or PTP domain of this phosphatase, such as D61Y, have been associated with myeloproliferative diseases such as juvenile myelomonocytic leukemia (JMML), effects of such mutations on T cells have not been addressed in scientific literature so far. Therefore, in the second part of this thesis we could demonstrate that D61Y mutation in the SH2 domain of SHP2 did not cause JMML pathology when only introduced into T cells. Especially in aged mice, T cells of SHP2 mutant mice showed an increased expression of cell adhesion molecule CD44. In accordance with these findings, we observed increased influenza A virus-specific T cells in the bone marrow of SHP2 D61Y mutant mice, indicating a role of the phosphatase in memory formation or maintenance of CD8+ Tem. Although SHP2D61Y mice revealed a comparable viral clearance, IFNγ production of virus experienced CD4+ and CD8+ T cells was diminished compared to control mice, underlining a negative involvement of the phosphatase in the JAK/STAT1 signaling axis as suggested before by studies using mice with SHP2-/- T cells.
Clostridioides difficile is the leading cause of antibiotic-associated diarrhea referring to infections of the gastrointestinal tract in the course of (broad-spectrum)antibiotic therapy. While antibiotic therapy, preferentially with fidaxomicin or vancomycin, often stops the acute infection, recurrence events due to remaining spores and biofilm-associated cells are observed in up to 20% of cases. Therefore, new antibiotics, which spare the intestinal microbiota and eventually clear infections with C. difficile are urgently required. In this light, the presented work aimed at the evaluation and characterization of three natural product classes, namely chlorotonils, myxopyronins and chelocardins, with respect to their antimicrobial activity spectrum under anaerobic conditions and their potential for the therapy of C. difficile infections. Briefly, compounds of all three classes were screened for their activity against a panel of anaerobic bacteria. Subsequently, the systemic effects of selected derivatives of each compound class were analyzed in C. difficile using a proteomics approach. Finally, appropriate downstream experiments were performed to follow up on hypotheses drawn from the proteomics datasets. Thereby, all three compound classes demonstrated significant activity against C. difficile. However, chelocardins similarly inhibited the growth of other anaerobes excluding chelocardins as antibiotic candidates for C. difficile infection therapy. In contrast, chlorotonils demonstrated significantly higher in vitro activity against C. difficile and close relatives compared to a small panel of other anaerobes. In addition, it could be shown that chlorotonils affect intracellular metal homeostasis as demonstrated in a multi-omics approach. The data led to speculate that chlorotonils eventually affect cobalt and selenate availability in particular. Moreover, a metaproteomics approach verified that oral chlorotonil treatment only marginally affected the intestinal microbiota of piglets on taxonomic and functional level. Furthermore, the proteome stress response of C. difficile 630 to myxopyronin B, which similarly showed elevated activity against C. difficile compared to a few other anaerobes, indicated that the antibiotic inhibited early toxin synthesis comparatively to fidaxomicin. Finally, evidence is provided that C. difficile 630 responds to dissipation of its membrane potential by production and accumulation of aromatic metabolites.
Staphylococcus aureus (S. aureus) endocarditis is still one of the most fatal heart diseases, with a mortality rate of 20-45%. In recent years, the importance of endothelial cells (ECs) in the context of endocarditis has become more evident. The vascular endothelium forms a selective barrier between blood and the adjacent tissue by maintaining an anti-inflammatory and anti-thrombogenic phenotype. However, in case of insertion of cardiac implants, an injury of the endothelium can occur which promotes platelet aggregation followed by S. aureus adherence to the platelets, especially in areas with low hemodynamic shear stress. This process is considered as a key event in the development of infective endocarditis (IE) and allows bacteria to colonize the heart valves. Despite extensive research, the pathogenesis of IE is still not completely understood. Therefore, further investigations are needed to enable an effective prevention of this life-threatening disease.
In order to study the infection process of S. aureus, internalization experiments with two different S. aureus strains, one control strain (HG001) and one strain isolated from an endocarditis patient (T-72949) were performed in human coronary artery endothelial cells (HCAEC). Subsequently, an extensive proteome analysis of the host cells was carried out. More specific analyses were performed using peptidoglycan (PGN), a cell wall component of Gram-positive bacteria, which causes a pro-inflammatory response in ECs. In this context, the focus remained on the analysis of cellular changes in terms of cell stiffness, wound healing, and additionally platelet aggregation.
The analysis of the HCAEC host proteome revealed a time-related difference depending on the infecting bacterial strain. Several proteins involved in host cell signaling pathways exhibited a higher abundance at earlier time points in host cells infected with endocarditis strain T-72949 compared to those infected with HG001. Further proteome analysis uncovered several adaptations on the cellular side that enable internalization and replication of both S. aureus strains as well as the activation of pathways that promote cellular recovery. Furthermore, it could be shown that PGN reduced cellular stiffness which could lead to an increased bacterial uptake and would thereby promote the development of a chronic S. aureus infection. Additionally, PGN prevented effective wound healing which promotes a pro-thrombotic and pro-inflammatory condition. This status could facilitate the bacterial infection of further cells. Apart from that, PGN induced platelet aggregation which could ease bacterial adhesion to thrombotic surfaces (e.g., dysfunctional endothelium). The following formation of a mature vegetation might protect the bacteria from the immune system and antibiotics.
The results of the present work emphasize the central role of ECs in the context of IE. It could be demonstrated that a healthy monolayer of ECs enables a beneficial cell response and may prevent the development of vascular diseases. Moreover, the comprehensive proteome dataset which was generated in this project provides a valuable source of information for future studies to unravel further molecular mechanisms of endocarditis and possible therapeutic approaches.
Primary producers, alongside heterotrophic bacteria and viruses, modulate the essential global carbon cycle. About half of the Earth’s net primary production originates in the marine environment. By effecting these systems and the burial of carbon, bacteria play a significant role in the world’s climate, especially with regard to rising temperatures and increasing anthropogenic carbon dioxide production.
Particles present substrate-rich niches for particle-associated bacteria, but are rare in the marine system. Particle-associated bacteria, comprising of chemotactic motile free-living and particle-attached bacteria, were shown to have higher respiration rates, were larger in cell and genome size and showed a higher hydrolytic activity of extracellular enzymes compared to the free-living fraction.
Understanding the contribution of particle-associated bacteria to the degradation of algal biomass is essential to understand the marine carbon cycle. However, the identification of this group is difficult and required refinement.
Sequential filtration, the most commonly used technique for the separation of bacterial fractions, provides only access to a part of the particle-associated microbiome, and includes with large and clustered bacteria undesired false-positives. To overcome these limitations, separation by gravity in Imhoff sedimentation cones was explored in this thesis to access, identify and define particle-associated microbiomes, in comparison and conjunction with the established separation techniques like sequential filtration and centrifugation.
The cultivability on agar plates was assessed, aiming at the question which portion of the colony-forming bacteria belong to free-living non-motile or motile bacteria or to particle-attached bacteria. As continuous cultivation on plates often involves loss of cultures, colonies of the original plate were used to obtain partial 16S rRNA sequences of individual colonies and of plate microbiomes.
For future studies on particle-associated bacteria, a representative strain collection was established from particle-attached bacteria retained on 3 μm filters and from particle-associated bacteria collected together with settled algae in sedimentation cones.
To understand the contribution of top-down selection to a yearly recurring bacterioplankton bloom at our sampling site Helgoland, particle-associated strains were included in isolation experiments for flavophages, since Flavobacteriia are among the most important responder to the yearly observed blooms.
Overall, this thesis provides new insights into the isolation and cultivation of particle-associated bacteria – an important, but currently not fully understood fraction of organisms within the marine system.
The here presented dissertation investigated the molecular mechanisms, by which the food industry model bacteria Pseudomonas fluorescens and Listeria monocytogenes, grown either as planktonic cultures, were inhibited by plasma treated water (PTW) produced by a microwave-induced plasma source (MidiPLexc). As a starting point, optimal operating parameters were determined with 5 standard liters per minutes(slm)compressed air during the treatment of 10 ml deionized water within a treatment time of up to 15 min (pre-treatment time). Treatment times of 1, 3 and 5 min were selected (post-treatment time). In addition to physical parameters, i.e. temperature measurements at different spots at the plasma source during the production of the PTW, the chemical composition of PTW was determined by pH measurements, chronoamperometry (determination of the H2O2 concentration), ion chromatography (determination of the NO2-, NO3- and ONOO- concentrations) and mass spectrometry (qualitative determination of the molecules). In addition, concentration changes of reactive species over a period of 3 h indicated a decrease of the NO2- concentration as well as an increase of the NO3- and ONOO- concentration in the PTW. Microbiological assays, i.e. quantification of colony-forming units (CFU), fluorescence and XTT assays, revealed a significant reduction of the proliferation ability of the cells, membrane damages and metabolic activity have been demonstrated for planktonic cultures as well as mono- and multispecies biofilms. PTW effects on biofilm structures were investigated using microscopic methods such as fluorescence microscopy, confocal laser scanning microscopy (CLSM), atomic force microscopy (AFM), and scanning electron microscopy (SEM), as well as physical methods such as contact angle measurements. Significant changes in the biofilm structure have been shown, which indicate an ablation of the biofilm mass from top to bottom by approximately 2/3 of the biofilm mass and a destruction of the extracellular matrix (ECM) by the reactive species within the PTW. Subsequently, fresh-cut lettuce has been treated with PTW produced by up-scaled plasma sources. Apart from qualitative parameters of the lettuce after PTW treatment such as texture and color, the concentration of PTW reactive species have been determined. These experiments showed that the composition of the reactive species were slightly different from that of the laboratory-scaled plasma source MidiPLexc. Notably, the PTW treatment did not cause significant changes in texture and color of the fresh-cut lettuce. Finally, a synergistic effect of PTW treatment followed by plasma-processed air (PPA) drying was demonstrated application-specific.
Lipoproteins of Staphylococcus aureus represent a major class of surface proteins, which are anchored to the outer leaflet of the cell membrane. Although they play a key role in the immune response and virulence, the majority of lipoproteins in this organism is still of unknown function. The aim of our study was to investigate the function of so far poorly or uncharacterized lipoproteins in S. aureus strain Newman. To this end, an integrated bioinformatical approach was applied to define the pan-lipoproteome of 123 completely sequenced S. aureus strains. In total, this analysis predicted 192 different potential lipoproteins, with a core lipoproteome of 39 and a variable lipoproteome of 153 lipoproteins. Out of those 192 lipoproteins, 141 are so far functionally uncharacterized. Primarily focusing on members of the core-lipoproteome with unknown or poorly characterized function, 24 lipoproteins or co-encoded neighbor proteins were selected for further characterization. Of those 24 proteins, 20 S. aureus markerless deletion mutants were constructed (S. aureus delta l01 - delta l20) and screened for an altered growth behavior under various conditions. Here, three mutants showed a temperature-sensitive phenotype, two mutants formed aggregates in the TSB of the manufacturer Merck (TSBMerck), and four mutants showed reduced growth under osmotic stress with 8% NaCl. An altered aggregation behavior was observed for four mutants in the presence of Triton X-100 and for eleven mutants in the presence of SDS. Furthermore, ten mutants revealed an impaired biofilm formation capacity as well as reduced hemolytic activity. Interestingly, S. aureus deletion mutants delta l14 (delta NWMN_1435) and delta l16 (delta NWMN_0646) showed an altered phenotype under nearly all tested growth and stress conditions. Most strikingly, both deletion mutants demonstrated dramatic defects in cell morphology and cell division during the transient growth phase in TSBMerck and were therefore selected for further detailed characterization. Electron microscopy imaging of the two mutants revealed an irregular cell shape, increased cell size, multiple displaced division septa, and incomplete separation of daughter cells resulting in the formation of cell aggregates in TSBMerck. Complementarily, microarray-based transcriptome analysis and whole-genome sequencing of S. aureus delta l14 and delta l16 suppressor mutants strongly point to a functional association of both lipoproteins with cell envelope- or cell division-related processes. Specifically, multiple hints suggest a functional connection of both lipoproteins with lipo- or wall teichoic acids. Of note, the phenotypes of S. aureus delta l14 and delta l16 are conditional and appear under some, but not all growth conditions. Thus, it is conceivable that the function of L14 and L16 is modulated by metabolic processes, or that the proteins might be part of a “backup system” becoming important only under certain conditions. Collectively, we propose that L14 and L16 fulfill a basic role in cell envelope- or cell division-related processes under specific growth conditions. Particularly, the activity of L14 and L16 might be necessary for the function or localization of lipo- or wall teichoic acids, and thus, might be linked to the regulation of autolysins. In conclusion, this study reveals important insights into the function of two so far uncharacterized but highly conserved lipoproteins in S. aureus.
Reactive species play an essential role in orchestrating wound healing responses. They act as secondary messengers and drive redox-signaling pathways that are involved in the hemostatic, inflammatory, proliferative and remodeling phases of wound healing. Cold plasma produces a profusion of short- and long-lived redox species that promotes wound healing, however, until today, the knowledge of CAP mediated wound healing remained scarce. In this thesis, CAP mediated wound healing mechanism and their effect on extracellular matrix and adhesion molecules have been investigated. To this end, a keratinocyte cell line (HaCaT), skin fibroblast cell line (GM Fbs) and an in vitro coculture model including both HaCaT and GM Fbs at a 2:1 ratio, were employed to investigate the cross talk between these two skin cell types.
We examined the impact of CAP on extracellular matrix proteins and cell adhesion molecules in GM Fbs and observed a significant impact of cold plasma treatment on the expression level of collagen moieties, cell adhesion molecule like integrin, cadherin, versican, MMPs as well as extracellular matrix proteins.
Moreover, scratch assays with monocultures of HaCaT, GM Fbs and coculture of these two cell types were performed. We detected that, CAP accelerated the migratory capability of HaCaT cells cocultured with fibroblasts. In fact, compared to HaCaT monoculture, a significant acceleration on cell migration was observed in coculture upon CAP treatment. NAC, a potent antioxidant could abrogate this CAP-stimulated cell migration in coculture, further pointing towards the importance of well-orchestrated reactive species in wound healing. To better understand this CAP-mediated effect on cell migration, we examined the signaling pathways involved in tissue homeostasis and regeneration. We checked the HIPPO signaling pathway and observed an upregulation of several signaling molecules at transcriptional level in GM Fbs upon CAP treatment.
YAP is the central nuclear executer of HIPPO signaling pathway. YAP was upregulated in both HaCaT cells and GM Fbs. The major downstream effectors of the HIPPO signaling pathway (CTGF and Cyr61) were also upregulated in dermal fibroblasts at both transcriptional and protein level. However, administration of antioxidant NAC inhibited CAP-mediated wound healing and abrogated the gene expression of the HIPPO downstream effectors. These results confirm that the upregulation of YAP-CTGF-CYR61 axis is due to CAP-generated redox species. In HaCaT cells, both CTGF and Cyr61 was minimally transcribed. Even though CTGF was rarely detected in HaCaT cells on the protein level,Cyr61 remained undetected. This again shows the importance of the cross talk between fibroblasts and keratinocytes.
The coculture with the inclusion of fibroblasts showed an accelerated migration rate, compared to HaCaT monoculture which specifies a cross talk between these two cell types. Thus, monoculture of HaCaT cells were incubated with CAP-treated and untreated fibroblast conditioned medium. Interestingly, we observed that HaCaT cells exhibited an improved cell migration rate when incubated with CAP-treated fibroblast-conditioned media compared to that observed after incubation with untreated media. Upon investigation, an induction of CTGF and Cyr61 secretion was observed upon CAP treatment in the fibroblast-conditioned media. Furthermore, exposure to recombinant CTGF and Cyr61 could also significantly improve HaCaT cell migration which confirms that CAP mediated accelerated cell migration is due to activation of YAP-CTGF-Cyr61 axis.
In conclusion, this study revealed a completely new mechanical insight of CAP mediated wound healing. Along with several other ECM molecules, CAP activates a regenerative signaling pathway i.e., HIPPO signaling pathway in dermal fibroblasts at the onset of wound healing. Dermal fibroblasts drive a paracrine interaction by secreting CTGF and Cyr61 in close vicinity of wound, resulting in accelerated keratinocyte migration and wound healing in coculture.
In vitro and in vivo analyses of mono- and mixed-species biofilms formed by microbial pathogens
(2022)
Microbial biofilms can be defined as multicellular clusters of microorganisms embedded in a self-produced extracellular matrix (ECM), which is primarily composed of polymeric biomolecules. Biofilms represent one of the most severe burdens in both industry and healthcare worldwide, causing billions of dollars of treatment costs annually because biofilms are inherently difficult to prevent, treat, and eradicate. In health care settings, patients suffering from cystic fibrosis, or patients with medical implants are highly susceptible to biofilm infections. Once a biofilm is formed, it is almost impossible to quantitatively eradicate it by mechanical, enzymatical, chemical, or antimicrobial treatment. Often the only remaining option to fully eradicate the biofilm is removing of the infected implant or body part. The primary reasons for the inherent resistance of biofilms against all forms of antimicrobial treatment are (I) a reduced metabolic activity of biofilm-embedded cells climaxing in the presence of metabolic inactive persister cells, as well as (II) the protective nature of the biofilm matrix acting as a (diffusion) barrier against antimicrobials and the host immune system. Consequently, there is an urgent need to better understand microbial biofilms from a structural and (patho-) physiological point of view in order to be able to develop new treatment strategies.
Therefore, the aims of this study were to investigate fundamental physiological properties of different clinically relevant single and multi-species biofilms, both in vitro and in vivo. Furthermore, the effectiveness of a novel treatment strategy using cold atmospheric pressure plasma was evaluated in vitro to treat biofilms of the pathogenic fungus C. albicans.
In article I, the intracellular and ECM protein inventory of Staphylococcus aureus during in vitro biofilm growth in a flow reactor was analyzed by liquid-chromatography coupled to tandem mass-spectrometry (LC-MS/MS) analysis combined with metabolic footprint analysis. This analysis showed that anaerobiosis within biofilms releases organic acids lowering the ECM pH. This, in turn, leads to protonation of alkaline proteins – mostly ribosomal proteins originating from cell lysis as well as actively secreted virulence factors – resulting in a positive net charge of these proteins. As a consequence, these proteins accumulate within the ECM and form an electrostatic network with negatively charged cell surfaces, eDNA, and metabolites contributing to the overall biofilm stability.
In article II, the in vivo metaproteome of the multi-species biofilm community in cystic fibrosis sputum was investigated. To this end, an innovative protocol was developed allowing the enrichment of microbial cells, the extraction of proteins from a small amount of cystic fibrosis sputum, and subsequent metaproteome analysis. This protocol also allows 16S sequencing, metabolic footprint analysis, and microscopy of the same sample to complement the metaproteome data. Applying this protocol, we were able to significantly enhance microbial protein coverage providing first insights into important physiological pathways during CF lung infection. A key finding was that the arginine deaminase pathway as well as microbial proteases play a so far underappreciated role in CF pathophysiology.
In articles III and IV, a novel treatment strategy for biofilms formed by the important fungal pathogen Candida albicans was evaluated in vitro. Biofilms were treated with two different sources of nonthermal plasma (with the Nonthermal Plasma Jet “kINPen09” as well as with the Microwave-induced plasma torch “MiniMIP”) and the effect on growth, survival, and viability was assessed by counting colony-forming units (CFU), by cell proliferation assays, as well as by live/dead staining combined with fluorescence microscopy, confocal laser scanning microscopy, (CLSM) and atomic force microscopy (AFM). These tests revealed that biofilms were effectively inactivated mostly on the bottom side of biofilms, indicating a great potential of these two plasma sources to fight biofilms.
A significant fraction of the decaying algal biomass in marine ecosystems is expected to be mineralized by particle-associated (PA) heterotrophic bacterial communities, which are thus greatly contributing to large-scale carbon fluxes. Whilst numerous studies have investigated the succession of free-living (FL) marine bacteria, the community structure and functionality of PA bacterial communities remained largely unexplored and knowledge on specific contributions of these microorganisms to carbon cycling is still surprisingly limited. This has mostly been due to technical problems, i.e., caused by the enormous complexity of marine particles and the high abundance of eukaryotic microorganisms within these particles. This thesis presents (a) an optimized metaproteomics protocol for an in-depth characterization of marine PA bacteria, (b) an application example with FL and PA communities sampled during a spring phytoplankton bloom in 2009 in the North Sea, which confirmed the reliability of the optimized metaproteomic workflow, (c) the metaproteomic analysis of particulate communities sampled during a spring phytoplankton bloom in 2018, resulting in an as yet unprecedented number of identified protein groups of the bacterial response bloom and (d) a proteomic analysis of a PA bacterial isolate grown on the two naturally abundant marine polysaccharides laminarin and alginate. The observed succession of bacterial clades during metaproteomic analyses of the investigated blooms highlights individual niche occupations, also visible on genus level. Additionally, functional data shows evidence for the degradation of different marine polysaccharides e.g., laminarin, alginate and xylan supporting the important role of PA bacteria during the turnover of oceanic organic matter. Furthermore, most of the identified functions fit well with the current understanding of the ecology of an algal- or surface-associated microbial community, additionally highlighting the importance of phytoplankton-bacterial interactions in the oceans. More detailed insights into the metabolism of PA bacteria were gained by the proteomic characterization of a selected PA bacterial isolate grown on laminarin and alginate. Functional analyses of the identified proteins suggested that PA bacteria employ more diverse degradation systems partially different from the strategies used by FL bacteria.
Compared to other human pathogens, S. aureus outstands with a remarkably broad spectrum of deseases: from minor skin infections over endocarditis, pneumoniae, and osteomyelitis, to septic shock. The prerequisite is an arsenal of adaptation strategies, encoded in the core and variable genome. It includes the coordinated expression of adhesins and toxins, evasion of the immune system, response to stress and starvation, adaptation of the metabolism, formation of biofilms and capsules, antibiotic resistance, and persistence on the skin, in nasal epithelial cells, and even in the inner of macrophages after phagocytosis. All these adaptation strategies enable S. aureus to colonize a diversity of niches within the human host. The inevitable requirement is the ability to activate the appropriate adaptation strategy at the right time and at the right place. S. aureus overcomes this challenge with a sophisticated regulatory network. This PhD thesis covers a broad spectrum of transcriptional regulators, involved in S. aureus pathogenesis: (1) the quorum sensing system Agr (regulation of early- and late stage virulence factors), (2) the Sar family (regulation of early- and late stage virulence factors), (3) SaeRS (regulation of accessory exotoxins and adhesins), (4) CodY (response to amino acid starvation, including extracellular proteases), (5) Sigma B (general stress response, including virulence factors), (6) Rex (anaerobic energy metabolism), (7) CtsR and HrcA (protein quality control), (8) PerR and Fur (oxidative stress response), and (9) antibiotic resistance. Traditionally, Proteomics constitute the long-lasting reputation of the Institute. In fact, the majority of investigations presented in this PhD thesis was initialized by proteomic analyses as the ultimate starting point. From the first day, a major goal of this PhD thesis was to add regulator-promoter interaction studies to the methodical spectrum. In particular, to complement transcriptomic and proteomic results by answering the logical follow-up question: Which regulator is responsible for the observed changes in gene expression and protein synthesis after application of a specific stimulus?
The first chapter provides specific analyses for three major regulators: Rex, CodY, and SarA. Publications were achieved for Rex (Hecker et al., 2009; Pagels et al., 2010). Results were mainly achieved by establishing regulator-promoter interaction methods (in particular EMSA and “footprinting”). Additionally, this chapter describes method development of a novel easy-to-apply method, named REPA (restriction endonuclease protection assay).
The second chapter presents method development for the genome-wide identification of regulator-promoter interactions, named “global footprinting”. This approach combines two already well-established methods: (A) Purification of a recombinant Strep-tagged regulator via Strep-tag affinity chromatography. The modification in “global footprinting” is to incubate the regulator with fragmented genomic S. aureus DNA, resulting in co-purification and enrichment of DNA streches with specific regulator binding sites. (B) Identification and quantification of these DNA streches via “next generation sequencing” (NGS). Using this combined approach, this PhD thesis was able to localize the most affine promoter binding site for the regulator Rex precisely down to one single base pair across the whole S. aureus genome.
The third chapter describes the assembly of a data library, collecting the majority of DNA microarray data and regulator-promoter interaction studies from the worldwide literature. This data library summarizes more than 50,000 regulatory events and more than 2,000 regulator binding sites. As published in the perspectives in Fuchs et al. (2018), this data library can be incorporated into the free-accessible online data base “Aureowiki” (provided and maintained by the Department of Functional Genomics, University of Greifswald). The major effort is the consolidation of these “big data” via in silico cluster analysis, comparing 282 different experimental conditions at once. The major finding of this analysis is the identification of seven functional and regulatory gene clusters in S. aureus pathogenesis that are conserved across S. aureus strain diversity. These findings allowed the creation of a prediction tool, to provide novel experimental starting points for the worldwide S. aureus research community. This prediction tool was successfully applied on several topics, and partially published: functional and regulatory prediction for a set of 20 selected lipoproteins as potential virulence factors (Graf et al., 2018), and prediciton of protein complexes (Liang et al., 2016).
Alltogether, this PhD thesis provides new insights into the molecular mechanisms of three pathogenesis-relevant regulators: Rex, CodY, and SarA. It describes the development of three novel experimental methods for wet and dry lab applications that can be used on research topics beyond S. aureus: REPA, “global footprinting”, and cluster analysis. Finally, cluster analysis identifies seven conserved fuctional and regulatory gene clusters, involved in S. aureus pathogenesis. This cluster anaysis is used as a prediction tool to provide novel experimental starting points, and to predict the physiological mode of action of newly discovered anti-staphylococcal agents.