Refine
Document Type
- Doctoral Thesis (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- Klimawandel (2)
- Local adaptation (2)
- Schmetterling (2)
- <i>Pieris napi<i> (1)
- Animal behavior (1)
- Climatic adaptation (1)
- Diensthund (1)
- Dispersal (1)
- Environmental conditions (1)
- Environmental gradient (1)
Institute
Recent climate change and its consequences for living organisms constitute one of the greatest problems of our century. Global warming entails an increase in mean temperature and the frequencies of extreme weather events. Those changes in environmental conditions affect both plants and animals. Because of their inability to escape from unsuitable environments, plants have evolved a wide spectrum of molecular programs to protect themselves against changing conditions. Responding on altered environmental conditions will change plants chemical composition and therefore also affect plants interaction with other species (e.g., predator-prey or symbiotic relationships). For instance, changes in the chemical composition of plants may influence the survival of associated herbivores. In other words, these herbivores will be affected indirectly by climate change due to changes in the suitability / quality of their food. The aim of this doctoral thesis was to discover the effects of climate change within the relationship of the butterfly Pieris napi and its host plant (Sinapis alba used here as host plant), including individual conditions (e.g. chemical compositions of plants; morphology, physiology of the butterfly) and behavior of female butterflies and larvae. In the first experiment, the influence of simulated climate change on the chemical composition of the plant Sinapis alba was investigated. The second experiment aimed to examine the influence of changes in plant composition on the butterfly P. napi. Glucosinolates (secondary compound of plants) are known to have an important effect on the preference and performance of herbivores. Therefore, in the third experiment, the impact of glucosinolates on the preference and performance of P. napi was investigated in order to see if these plant compounds had the most important influence on this butterfly. Furthermore, in the fourth experiment, it was explored whether there is a latitudinal gradient within the species´ responses to changes in its host plant. The fifth and last experiment aimed to examine, if there are general principles across species regarding indirect effects of climate change.
Climate change, simulated by different combinations of temperature and water regimes, had an effect on the plant chemistry. The combination of temperature and water availability changed plant composition substantially. Especially the amount of carbon and glucosinolates (here above all sinalbin) in S. alba plants varies between the different treatments and therefore between the different combinations of temperature and water regimes. Regarding glucosinolates, elevated temperatures increased their concentration in leaves, whereas water deficit in combination with higher temperature reversed this pattern. For carbon content, all plants, except those of the control group, showed a decreased amount of total carbon. However, simulated heat waves had no effect on plants, leading to the assumption that the plants were able to recover from heat stress sufficiently during the control phases. Changes in plant composition affected both larvae and females of the butterfly P. napi. Therefore, changed host-plant chemistry alters the plant quality for this herbivore, meaning that plants of different treatments represent different plant qualities defined by their composition. Females of P. napi may be able to differentiate between plant qualities and even show a direct preference. Therefore, glucosinolates seem to act as oviposition stimulants. However, preferring another plant quality with lower amount of glucosinolates suggest that females of this butterfly species were attracted by more than high levels of glucosinolates alone. Larvae fed with different plant qualities performed differently, indicated by smaller wings (lighter bodies) and prolonged development when fed with plants contained higher amount of the glucosinolate sinalbin. It can be assumed that a higher amount of sinalbin decreases the quality of the host plant and therefore lead to these responses. Probably larvae need to shift their resources from growth to detoxification and therewith survival. Furthermore, drought conditions during plant growth seem to reduce the overall negative effects of higher temperatures, lead to an increase of host plant quality. Larvae seem to benefit from feeding on these “double-stressed” plants. Comparison between the results of the preference and performance tests suggests that there might be a mismatch between female preference and larval performance. It seems that the stimulating effect of high concentration of glucosinolates, in this case sinalbin, misdirects females´ decision to less suitable host plants, meaning that the advantage of less competition for larvae come at costs through detoxification. Using Brassica napus plants with genetically fixed glucosinolate levels, it could be demonstrate that there must be other plant components influencing females´ oviposition behavior been seen in the choice experiment with S. alba. The comparison of German and Italian populations to changes in host-plant quality showed fewer differences between countries as expected. However, German and Italian individuals differed in their reaction to altered plant quality, at least in developmental time and larval growth rate. It seems that Italian larvae benefitted from plants grown under higher temperatures, whereas drought-stressed plants affected them negatively. German individuals in contrast seem to benefit only from water stress during plant growth. With regard to the sexes of P. napi, it seems that females respond differently than males to changes in plant quality. Furthermore, the results of the performance test on Bicyclus anynana showed that there might be some general principles for the respond of butterflies to changes of its host plant. B. anynana responded in a similar way to different host plant qualities as P. napi did, meaning that plants grown under higher temperatures and drought conditions seem to be beneficial for the larval performance.
In summary, these findings may have important implications for the indirect effects of climate change on this butterfly in natural environments. First, climate change seems to have an impact on the chemical composition of plants. Second, changes in plants caused by increasing temperature and droughts seem to influence the preference and performance of this butterfly. However, there are differences between populations, which seem to be induced by former adaptation. And third, there might be some general principles for the respond of butterflies to changes in their host plants. This thesis focuses only on possible indirect effects of climate change. However, there are direct effects, which may alter the responses of herbivores to changes in their host plant as well. Therefore, further investigations in this linkage and in other plant-herbivore relationships will be necessary to explore how climate change may alter the relationship between herbivores and their hosts.
Die Ergebnisse dieser Arbeit sollen dazu dienen, das Tragen eines Maulkorbs bei Diensthunden als möglichen Stressor zu analysieren und das Verhalten von Passanten auf Maulkorb tragende Hunde weiter zu erforschen.
123 Diensthunde wurden dafür in drei verschiedenen Situationen (Ablage (N=103), Stadtspaziergang (N=51) und Schutzdienst (N=35)) untersucht. Hierzu wurden das Ausdrucksverhalten und die Cortisolwerte videografiert und gemessen. Die Situatio-nen wurden jeweils einmal ohne und einmal mit Maulkorb durchgeführt, um gegebenenfalls eine Veränderung im Verhalten oder in den Cortisolwerten der Hunde durch den Maulkorb zu erkennen. Die Cortisolproben wurden vor der Situation im oder am Auto von den Diensthunden von den jeweiligen Hundeführern entnommen. 10-15 Minuten nach der Situation wurde die zweite Speichelprobe entnommen. Die Speichel-Cortisolwerte vorher und nachher dienten dem Vergleich und der Beurteilung, ob der Maulkorb einen Einfluss auf die Cortisolwerte hatte. Ausgewertet wurden die Proben mit Hilfe eines Enzymimmunoassays in Wien.
Während des Stadtspaziergangs wurde das Verhalten der Passanten auf die Hunde videografiert und ausgewertet. Auch hierbei wurde der Vergleich im Verhalten der Menschen auf die Diensthunde „ohne Maulkorb“ (N=1010) und „mit Maulkorb“ (N=1011) angestellt.
Die Fragestellungen dieser Arbeit waren:
• Zeigt der Diensthund in drei unterschiedlichen Übungssituationen durch das Tragen des Maulkorbes andere Verhaltensweisen als ohne Maulkorb?
• Steigt der Pegel des Stresshormons Cortisol beim Diensthund durch das Tragen des Maulkorbes in drei unterschiedlichen Übungssituationen im Vergleich zu den gleichen Situationen ohne Maulkorb an?
• Sind die Reaktionen von Passanten auf einen maulkorbtragenden Hund anders, als auf einen Hund ohne Maulkorb?
In dieser Studie konnte in keiner der drei Situationen ein Anstieg der Cortisolwerte bei den Hunden durch das Tragen des Maulkorbes festgestellt werden. Bei den Ver-haltensbeobachtungen konnten hingegen Unterschiede erkannt werden. Die Ohr- und Rutenhaltung wurden während des Stadtspaziergangs mit Maulkorb häufiger in einer defensiveren und submissiveren Stimmungslage getragen. Zusätzlich wurde ohne Maulkorb mehr gewedelt und geschnüffelt.
Der Einsatz des Maulkorbes bei der Polizei erzeugt nach dieser Studie bei Dienst-hunden keinen zusätzlichen Stress und stellt vielfach ein unersetzliches Hilfsmittel dar. Auch bei der Verwendung im Privathundebereich ist der Maulkorb deshalb mit hoher Wahrscheinlichkeit ein gutes Hilfsmittel, das der Hund, bei guter Gewöhnung und für einen begrenzten Zeitraum, ohne gesundheitliche Bedenken tragen kann.
Das Verhalten der Passanten auf die Hunde unterschied sich nur in dem Verhalten „keine Reaktion“. Auf Hunde ohne Maulkorb wurde häufiger nicht reagiert. Ein Anzeichen für erhöhte Furcht oder Wachsamkeit bei einem potentiell gefährlichen Hund mit Maulkorb, wie es in der Studie von Racca & Baudoin (2009) festgestellt wurde, konnte nicht beobachtet werden.
Der Vergleich von den in dieser Arbeit gewonnenen Erkenntnissen mit anderen Studien, ist fast nur in dem Bereich der Stressforschung beim Hund möglich. Arbeiten über die Auswirkungen des Maulkorbes auf das Verhalten von Hunden oder Passanten sind bisher kaum durchgeführt worden. Diese Arbeit bietet in diesem Bereich einen bisher einzigartigen Ansatz und konnte darüber hinaus mit einer großen Anzahl von Hunden durchgeführt werden.
Die vorgelegte Studie wurde auch im Hinblick auf Tierschutzaspekte durchgeführt und diskutiert. Es ist zu berücksichtigen, dass für die hier getesteten Situationen nur ein kurzes Tragen des Maulkorbes vom Hund notwendig war. Die Vielfältigkeit der unterschiedlichen Ausbildungsmethoden in den Polizeidienststellen und auch die vielfältigen Persönlichkeiten von Hunden und Hundeführern machen die Arbeit so anwendungsrelevant. Gerade auch die unterschiedliche Gewöhnung und Gewöhnungszeit an den Maulkorb, spiegelt die Realität im Umgang mit diesem Hilfsmittel wider und bietet, durch die große Zahl an teilgenommenen Hunden, trotzdem aussagekräftige Ergebnisse.
In einer parallel durchgeführten Studie von I. Spitzley werden das Verhalten und die Cortisolwerte von Haushunden während eines 45 minütigen Freilaufs, jeweils Hunde mit und ohne Maulkorb, ausgewertet und analysiert.
In the current era of anthropogenic climate change is the long-term survival of all organisms dependent on their ability to respond to changing environmental conditions either by (1) phenotypic plasticity, which allows species to tolerate novel conditions, (2) genetic adaptation, or (3) dispersal to more suitable habitats. The third option, dispersal, allows individuals to escape unfavorable conditions, the colonization of new areas (resulting in range shifts), and affects patterns of local adaptation. It is a complex process serving different functions and involving a variety of underlying mechanisms, but its multi-causality though has been fully appreciated in recent years only. Thus, the aim of this doctoral thesis was to disentangle the relative importance of the multiple factors relevant to dispersal in the copper butterfly Lycaena tityrus, including the individual condition (e.g. morphology, physiology, behavior) and the environmental context (e.g. habitat quality, weather). L. tityrus is a currently northward expanding species, which makes it particularly interesting to investigate traits underlying dispersal. In the first experiment, the influence of weather and sex on movement patterns under natural conditions was investigated. Using the Metatron, a unique experimental platform consisting of interconnected habitat patches, the second experiment aimed to examine the influence of environmental factors (resources, sun) on emigration propensity in experimental metapopulations. Human-induced global change (e.g. climate change, agricultural intensification) poses a substantial challenge to many herbivores due to a reduced availability or quality of feeding resources. Therefore, in the third experiment, the impact of larval and adult food stress on traits related to dispersal ability was investigated. Additionally, the effect of different ambient temperatures was tested. In the fourth experiment, core (Germany) and recently established edge (Estonia) populations were compared in order to explore variation in dispersal ability and life history traits indicative of local adaptation. Dispersal is often related to flight performance, and morphological and physiological traits, which was investigated in experiments 2-4. Butterflies were additionally subjected to behavioral experiments testing for the individual’s exploratory behavior (experiments 3 and 4).
Males and females differed substantially in morphology, with males showing traits typically associated with a better flight performance, which most likely result from selection on males for an increased flight ability to succeed in aerial combats with rivalling males and competition for females. This pattern could be verified by mobility measures under natural conditions and flight performance tests. Interestingly, although females showed traits associated with diminished flight performance, they had a higher emigration propensity than males (though in a context dependent manner). Reasons might be the capability of single mated females to found new populations, to spread their eggs over a wide range or to escape male harassment. Conditions indicative of poor habitat quality such as shade and a lack of resources promoted emigration propensity. The environmental context also affected condition and flight performance. The presence of resources increased the butterflies’ condition and flight performance. Larval and adult food stress in turn diminished flight performance, despite some reallocation of somatic resources in favor of dispersal-related traits. These detrimental effects seem to be mainly caused by reductions in body mass and storage reserves. A similar pattern was found for exploratory behavior. Furthermore, higher temperatures increased flight performance and mobility in the field, demonstrating the strong dependence of flight, and thus likely dispersal, on environmental conditions. Flight performance and exploratory behavior were positively correlated, probably indicating the existence of a dispersal syndrome. The population comparison revealed several differences between edge and core populations indicative of local adaptation and an enhanced dispersal ability in edge populations. For instance, edge populations were characterized by shorter development times, smaller size, and a higher sensitivity to high temperatures, which seem to reflect adaptations to the cooler Estonian climate and a shorter vegetation period. Moreover, Estonian individuals had an enhanced exploratory behavior, which can be advantageous in all steps of the dispersal process and may have facilitated the current range expansion.
In summary, these findings may have important implications for dispersal in natural environments, which should be considered when trying to forecast future species distributions. First, dispersal in this butterfly seems to be a highly plastic, context-dependent trait triggered largely by habitat quality rather than by individual condition. This suggests that dispersal in L. tityrus is not random, but an active process. Second, fast development and an enhanced exploratory behavior seem to facilitate the current range expansion. But third, while deteriorating habitat conditions are expected to promote dispersal, they may at the same time impair flight ability (as well as exploratory
behavior) and thereby likely dispersal rates. For a complete understanding of a complex process such as dispersal, further research is required.
In agricultural grasslands, management practice highly determines reproductive success for ground-nesting bird species. The most effective conservation measure is the delay of first mowing dates until broods fledge or bird friendly mowing. Late mowing often implies economical losses for farmers and may increase land use abandonment, which will, in turn, cause habitat deterioration. Thus, grassland bird conservation involves the challenge to protect broods against land use and to promote an appropriate management to sustain habitat quality at the same time. Because of their late and extended breeding season Corncrakes Crex crex are in particular vulnerable to frequent mowing which increases nest destruction, chick mortality and habitat loss.
This thesis aims to gain knowledge on favourable habitat characteristics and brood protection in relation with grassland management to derive implications for the conservation of Corncrake breeding sites in floodplain meadows. Study area is the Lower Oder Valley National Park in northeastern Germany that holds a Corncrake population of 50 to 250 calling males. The study covered two study periods, before (1998-2000) and after (2012-2015) the implementation of new Corncrake conservation measures allowing inferences on the effects of different timing and intensity of mowing for brood protection and habitat conservation.
Breeding was only confirmed on meadows with high forb cover, low sedge cover, low litter heights and a close location to ditches. Radio-tracked females preferred areas with high cover of forbs (> 30%) and a distinct relief heterogeneity, which was associated with increased vegetation diversity. Vegetation characteristics on sites with day calling activity of males showed more similarity with breeding sites than with sites only used for nocturnal calling, supporting the assumption that diurnal calling indicates the occurrence of females. Favoured vegetation structure was best provided by mowing in the preceding year. Low-intensity grazing was less effective in reducing litter and sedge cover, especially when conducted late in the season. In the absence of management, meadows rapidly overgrow and dense litter accumulates from dead plant material in eutrophic floodplains, which increases walking resistance for Corncrakes and may impede prey accessibility. Plant species richness and forb cover declined after land use cessation. Male Corncrakes abandoned calling sites on meadows unmanaged for longer periods.
Besides the availability of suitable nesting sites, food supply and nest predation risk are also related to vegetation structure and may indirectly influence the habitat quality. Faecal samples of Corncrakes consisted mainly of beetles and their larvae, followed by snails, spiders and earthworms. Invertebrate biomass, sampled with pitfall-traps, was twice as high, the numbers of large ground beetles even five times higher on previously unmanaged than on managed meadows. Invertebrate abundance was highest in the first and second years after land use abandonment, but strongly decreased afterwards to a similar level like under annual management. Therefore, unmown refuge strips for Corncrake protection and alternating mowing also enhance invertebrate prey resources in floodplain meadows.
Mammals caused the majority of all observed artificial ground nest predations. Nest predation risk was higher on previously unmanaged than on managed sites. Unmanaged meadows probably attract mammalian predators, because they provide a more favourable vegetation structure for foraging and harbour high numbers of small rodents, increasing also the risk of incidental nest predations. These findings suggest that an annual removal of vegetation, if conducted late in the season to protect grassland birds may reduce predation risk of ground nests in the subsequent year.
Whereas during 1998-2000 half of the study area was managed by the end of July, land use was delayed on meadows occupied by Corncrakes until at least 15 July or 15 August during 2012-2015. On meadows mown between 15 July and 15 August refuge strips were applied. The majority of Corncrake broods were started in the second half of May and mowing postponement until 15 August allows 80% of chicks to fledge without disturbance in the study area. In 65% of broods chicks reach independence (> 14 days old) until 15 July and can be protected by Corncrake friendly mowing because then they are large enough to successfully escape during mowing. Both adults and chicks survived in 10 m wide refuge strips. Because most birds tried to leave the unmown block for the first time when it was up to 30 m wide and only 15 to 30 m wide strips served as temporary habitat for unfledged chicks from mowing to departure, 10 m should be considered as the absolute minimum width for refuge strips.
The strong reduction of land use especially during July should have allowed more chicks to survive until fledging in 2012-2015 than 1998-2000. Besides the protection of nests and higher chick survival, the decline of mowing intensity increased the extent of habitat available for second breeding attempts. In 2012-2015, broods were initiated until late July in the study area. Male Corncrakes showed continuous arrival and departure during the breeding season. Similar departure rates were estimated by a multi-state occupancy model and for radio-tracked males in the same study area and periods, which both left their home ranges spontaneous and due to the impact of mowing. Compared to 1998-2000, total departure of males during June and July was reduced by 50% in 2012-2015, when more calling sites were protected from mowing. Although male Corncrakes show high intra-seasonal dispersal due to their sequential polygamous breeding system, postponed land use should have increased mating opportunities and re-nesting at first breeding sites.
Therefore, future directions of Corncrake conservation in eutrophic floodplains should address the increase of annual late mowing to protect broods and maintain favourable habitat conditions by creating a more flexible mowing regime adjusted to actual occurrence of Corncrakes. This requires expert advice to farmers based on an intense monitoring of calling Corncrakes. Repeated nocturnal surveys during May and June are highly recommended because low detection probability in combination with constant departure substantially underestimated the number of males present. Additionally, diurnal calling activity could improve the identification of breeding sites and timing could be used to estimate chick age in July to select sites for Corncrake friendly mowing. Because currently late mowing dates are unattractive for farmers conservation actions should along with financial compensations for mowing after 15 August promote the utilization of late-cut grass with poor nutrient quality for combustion. Energy production could provide an alternative income for farmers operating in conservation areas with delayed land use dates and will increase their acceptance of Corncrake protection measures.
Global climate change is omnipresent all over the world and is affecting and challenging organisms in various ways. Species either have to adapt to the changing environmental conditions or move to new habitats in order to avoid extinction.
Possible ways for an organism to react can be dispersal, phenotypic plasticity, genetic adaptation or a combination of these factors. Among the various consequences of climate change, especially changes in temperature affect plenty of species. In ectotherms, the body temperature and associated mechanisms are strongly dependent on environmental conditions.
The aim of this work was to investigate the mechanisms underlying adaptation to thermal variation and heat stress in the widespread butterfly species <i>Pieris napi<i>.
Focusing on indicators of individual condition, including morphology, physiology and life history traits, the purpose was to specify whether the species’ responses to temperature variation have a plastic or genetic basis. In the first experiment, phenotypic variation along a latitudinal and altitudinal cline was investigated. Yellow reflectance of wings was negatively correlated with wing melanisation, providing evidence for a trade-off between a sexually selected trait (yellow color) and thermoregulation (black color). Body size decreased with increasing latitude and led to the assumption that warmer conditions are more beneficial for <i>P. napi<i> than cooler ones. An increased flight performance at higher altitudes but not latitudes may
indicate stronger challenges for flight activity in high-altitude environments.
The second experiment focused on clinal variation and plasticity in morphology, physiology and life history in F1-generation individuals reared in captivity at different temperatures. It could be shown that individuals from cooler environments were less heat-tolerant, had a longer development but were nevertheless smaller, and had more melanised wings. These differences were genetically-based. Furthermore, it could be shown that a higher developmental temperature speeded up development, reduced body size, potential metabolic activity, and wing melanisation but increased heat tolerance, documenting plastic responses.
In a third experiment, we examined physiological responses to heat stress. A transcriptome analysis revealed an upregulation in molecular chaperones under hot conditions, whereas antioxidant responses and oxidative damage remained unaffected. The antioxidant glutathione (GSH) though was reduced under both cold and hot conditions. Interestingly, Swedish individuals were characterized by higher levels of GSH, lower early fecundity, and lower larval growth rates compared with German or Italian populations, suggesting a ‘pace-of-life’ syndrome. Thus, the individuals from warmer regions show the opposite pattern with a lower investment into maintenance but a faster lifestyle.
In summary, we found clinal variation in body size, growth rates and concomitant development time, wing aspect ratio, wing melanisation and heat tolerance. The effects of high developmental temperature very likely reflect adaptive phenotypic plasticity. When speeding up development; heat tolerance is increasing while body size, potential metabolic activity and wing melanisation are decreasing. Overall, body size of <i>P. napi<i> individuals decreased from south to north while the melanisation of the wings increased. Furthermore, we found a connection between increased wing melanisation and decreased yellow reflectance, most likely caused by a trade-off between the two. We could confirm that <i>P. napi<i> individuals from warmer environments were more heat-tolerant and larger than individuals from colder environments. Due to increasing temperatures and heat waves becoming more frequent in the future, being able to cope with such conditions will be advantageous. As warmer conditions had positive effects on individual development, <i>P. napi<i> may benefit from global warming, but its association with moist habitats suggests negative consequences of climate change. We could also reveal pronounced plastic and genetic responses in <i>P. napi<i>, which may indicate high adaptive capacities. Thus, increasing temperature may not be too problematic for the species, as it seems to be rather well equipped to deal with such challenges. However, as climate change entails changes in precipitation / humidity along with temperature changes, such issues need further investigation.