Refine
Document Type
- Doctoral Thesis (4)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- 7755384-6 (1)
- Dissertation (1)
- Festkörperphysik (1)
- Heterostrukturen (1)
- Magnetismus (1)
- Photoströme (1)
- Seebeck effect (1)
- Spintronik (1)
- THz (1)
- high spatial resolution (1)
Institute
Organic molecules are the carbon-based complex of several atoms, is an innovative and essential element to create nano-structural platforms, as a building block in the
field of organic electronics and organic spintronics. Because of its variety and functionality via widely studied synthetic methods, molecules have played an important role in electronics as not only a transport channel in bulk form but also a tuning layer
at the interface of hetero structures. The potential of molecular layers has also stood out in spintronics, owing to its mass-low composition producing long spin life time.
Organic materials can be employed in spintronics applications, benefiting from their low cost, ease of processing, and chemical tunability. Beyond this advantage, the configuration
of molecules on a metal film displays unique phenomena as it can control the molecular spins and interfacial coupling between them, resulting in the emergence
of molecular spinterface.
This thesis work focuses on identifying the interfacial properties between the ferromagnet and the Phenalenyl (PLY) based metal complexes. The growth morphology study of the copper-phenalenyl Cu-PLY based molecules influence the electronic coupling between the molecular layer and the ferromagnet. Zinc- Phenalenyl (ZMP) molecule already have been studied [1] by demonstrate the formation of a spinterface,
resulting interface magneto resistance (IMR) close to room temperature. The
spinterface formation leads to the unique property, that a magnetic tunnel junction
with a ZMP barrier requires only one ferromagnetic metal layer, while the other ferromagnetic layer is formed in the organic barrier directly at the ferromagnet/organic
barrier interface. Here we compare Phenaleny, Copper-Phenaleny Cu-PLY and Zincmethyl- phenaleny molecule based MTJ electrical and magnetic properties which will
be suitable for tunnel barrier and can be used for stable memory devices. We tune the magnetic property of ferromagnet and forma hybrid interface without any oxide layers in between the ferromagnet and molecular layers. The tuning of magnetic properties
via the molecular approach will certainly extend versatile functionalities of organic spinterfaces.
In this work, 2-dimensional measurements in the THz frequency range with self-made spintronic THz emitters were presented. The STE were used to optimize the spatial resolution and determine the magnetization in geometric shapes. At the beginning, various combinations of FM and NM layers were produced and measured to achieve an optimal composition of the STE. The layer thickness of the ferromagnetic CoFeB layer and the nonmagnetic PT layer was also varied. The investigations have shown that a layer combination of 2 nm thick CoFeB and 2 nm thick Pt, applied to a fused silica glass substrate and covered with a 300 nm thick SiO2 layer, emits the highest THz amplitude. Based on these, a structured sample, consisting of an STE and an additional layer system of 5 nm Cr and 100 nm Au, was produced. Further, three wedge-shaped structures were removed from the gold layer by an etching process so that the THz radiation generated by the STE can pass through these areas. This enables the optimization of the resolution of the system. For this purpose, the sample was moved perpendicular to the laser beam by two stepping motors with a step size of 5 μm and imaged 2-dimensionally. By reducing the step size to 0.2 μm, the beam diameter could be measured at the edge of the structure using the knife-edge method. Based on this measurement, the resolution of the system could be determined as 5.1 ± 0.5 μm at 0.5 THz, 4.9 ± 0.4 μm at 1 THz, and 5.0 ± 0.5 μm at 1.5 THz. These results are confirmed by simulations considering the propagation of THz wave packets through the SiO2. The expansion of the FWHM of the waves, passing through the 300 nm thick layer, is about 1%. Only a SiO2 layer with a thickness in the μm range occurs an expansion of around 10%. This shows that it is possible to perform 2-dimensional THz spectroscopy with a resolution in the dimension of the exciting laser beam by using near-field optics. Afterward, the achieved spatial resolution was used to investigate the influence of external magnetic fields on the STE and the emitted THz radiation. By implementing a pair of coils above the sample, an external magnetic field could be applied parallel to the pattern. The used sample was designed in such a way that only certain geometric areas on the fused silica glass substrate were coated with an STE so that THz radiation is emitted only in those areas. The 2-dimensional images show the geometric structures for f = 1.0 THz and f = 1.5 THz clearly. By applying a permanent, positive magnetic field (+M), a positive course of the THz amplitude can be seen. A rotation of the magnetic field by 180° (-M) leads to a reversal of the orientation of the emitted THz radiation, whereby the magnetic field does not influence the corresponding frequency spectrum. By using minor loops, the sample was demagnetized by the constant reduction of the magnetic field strength with alternating magnetic field direction. The 2-dimensional representation of the pattern with a step size of 10 μm shows that the sample was demagnetized since both, positively and negatively magnetized structures, could be imaged. In addition, in the 2nd row from the top, a completely demagnetized circle and a rectangle with a division into two domains can be seen. These structures have both positive and negative magnetized areas, which are separated by a domain wall. To investigate this in more detail a 2-dimensional measurement of the divided regions was made with a step size of 2.5 μm. These images confirm the division of the structures into positive and negative domains, separated by a domain wall, which was verified by Kerr-microscope measurements. Both data show a similar course of the domains and the domain wall. However, to be able to examine the domain wall more precisely using 2-dimensional THz spectroscopy, the resolution of the system must be improved to a range of a few nm, because the expected domain wall width is between 𝑙𝑊 = 12.56 nm and 𝑙𝑊 = 125.6 nm. The improved resolution would make it possible to image foreign objects, such as microplastics in biological cells or tissue. For this purpose, different plastics, such as polypropylene, polyethylene, and polystyrene, were investigated in the THz frequency range up to 4 THz. While no specific absorption could be determined for PP, characteristic absorption peaks were found for PE and PS. The energy of the photons with a frequency of about 2.2 THz excites lattice vibrations in the PE. Therefore, this frequency is specifically absorbed, and the intensity in the transmission spectrum is lower than for other frequencies. PS absorbs especially THz radiation with a frequency of 3.2 THz. In addition, all of the investigated plastics are mostly transparent for THz radiation, which makes imaging of these materials feasible. Based on these basic properties, it will be possible to image and identify these types of plastic.
In this thesis, the transport properties of topological insulators are investigated. In contrast to trivial insulators, topological insulators possess conducting boundary states which cross the bulk energy gap that separates the highest occupied electronic band from the lowest unoccupied band. The materials used in this thesis are three-dimensional topological insulators with time-reversal symmetry. Their associated helical surface states are protected against elastic backscattering by Kramers degeneracy. The unique properties of the helical surface states can be utilized to generate spin-polarized currents at the surface of topological insulators and to control their propagation direction. This makes them a promising material class for the field of spintronics.
Here, we perform photocurrent scans of topological insulator Hall bar and nanowire devices. From these measurements, we obtained two-dimensional maps of the polarization-independent and helicity-dependent components of the photocurrents.
We find that the polarization-independent component is dominated by the Seebeck effect and thus driven by thermoelectric currents. On the other hand, the helicity-dependent component is driven by the spin-polarized currents that emerge from the topologically non-trivial helical surface states via the circular photogalvanic effect.
First and foremost, our experiments demonstrate that topological insulator nanowires provide a promising platform for the generation of spin-polarized currents, whose direction can be controlled via the helicity of the excitation light. They also highlight the importance of analysing the spatial distribution of the photocurrent, as we observe a strong enhancement of the spin-polarized current and the thermoelectric current at the interface between the nanowire and the metallic contacts. As our analysis shows, the thermoelectric current is enhanced by the Schottky effect and the spin-polarized current is amplified by the spin Nernst effect. In addition, the spin Nernst effect is also present in Hall bar devices and manifest as an enhancement of the spin-polarized current along the Hall bar sides.