Refine
Year of publication
- 2023 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Keywords
- Hepatitis-E-Virus (1)
- Phylogenetik (1)
- Replikon (1)
- reverse Genetik (1)
Institute
Hepatitis E virus (HEV) is emerging worldwide as a zoonotic pathogen that has remained largely undetected for decades, if not centuries. Its enormous success can be attributed to the wide range of host species, which can transmit the virus to humans, depending on the viral genotype. As a result, HEV is likely to remain a challenge even when the remaining hepatitis viruses (HAV, HBV, HCV), which are transmitted exclusively between humans, are under control. Although millions of HEV infections occur each year, little is known about this puzzling pathogen. One major issue in HEV research is the lack of reliable model systems. Established animal models are inefficient, expensive, or simply not representative of human HEV. On the other hand, cell culture systems are limited by the slow growth of the virus and inefficient replication and infection. The aim of this work is to with deepen the understanding of zoonotic HEV in animal hosts in Germany. For this purpose, a molecular and phylogenetic characterization of HEV sequences from rabbits and swine was conducted. A novel subtype of the zoonotic genotype HEV-3 was identified in a rabbit sample, further emphasizing the role of rabbits as HEV host species and possible reservoir of zoonotic HEV infections in Germany. On the other hand, a molecular biological screening of pigs and wild boars in Mecklenburg-Western Pomerania indicates a wide range of HEV-3 subtypes circulating in swine in north-east Germany. Furthermore, an optimized replicon system was established in order to enable characterization of various HEV sequences by reverse genetics. As a proof of concept, two rabbit HEV derived replicons were compared with two established, cell culture adapted HEV strains. The influence of different regions of the nonstructural protein on HEV replication was determined and quantified. In particular, a system was established, to reproducibly compare different strains and genotypes. This refined replicon system will enable the characterization of further HEV sequences and thus expand the knowledge on the determinants of the viral life cycle.