Refine
Document Type
- Doctoral Thesis (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
- Picea glauca (2)
- AFLP (1)
- Adaption (1)
- Alter (1)
- Ausbreitung (1)
- Climate change (1)
- Cloning (1)
- DNA Extraktion (1)
- FFH (1)
- Fallgeschwindigkeit (1)
Die mitteleuropäischen Flachbärlappe (Gattung Diphasiastrum) sind in Deutschland alle hochgradig gefährdet und können ohne geeignete Artenhilfsmaßnahmen hier nicht dauerhaft überleben. In der vorliegenden Arbeit werden die Grundlagen für ein Artenhilfsprogramm geschaffen, indem die Reproduktionsbiologie untersucht worden ist und die ökologischen Ansprüche und Gefährdungsursachen ermittelt wurden, um entsprechende Hilfsmaßnahmen für die Arten zu entwickeln.
Um Rückschlüsse auf das Reproduktionssystem der Eltern- und Hybridarten zu erhalten, wurde die genetische Diversität ermittelt. Dabei kam das fingerprinting-Verfahren AFLP zum Einsatz, womit Arten und genetisch verschiedene Individuen voneinander abgegrenzt werden können. Verwendet wurden die beiden Primer-Kombinationen EcoRI-AAG / VspI-CT und EcoRI-ACT / VspI-CAG. Die größte genetische Diversität der Elternarten weist D. complanatum auf, die überwiegend durch echte Fremdbefruchtung (outcrossing) entsteht, während die genetische Diversität der beiden anderen Elternarten D. alpinum und D. tristachyum gering ist und nur knapp oberhalb einer definierten Fehlerrate liegt. Die Proben der Hybridarten unterscheiden sich so stark voneinander, dass davon ausgegangen werden muss, dass dies immer wieder neu entstehende F1-Hybriden sind, wenngleich die Unterschiede bei D. oellgaardii vergleichsweise gering aufgrund der geringen genetischen Diversität der Elternarten D. alpinum und D. tristachyum ist.
Die Sporenproduktion in den Sporenständen wurde unter anderem direkt durch Zählung von Sporen in den Sporangien unterm Stereomikroskop und Zählung der Sporangien in den Sporenständen ermittelt. Sporangien von L. clavatum enthalten demnach 27735 (± 7492) Sporen pro Sporangium, 105,2 (± 3,7) Sporangien pro Sporenstand und hochgerechnet etwa 2,1 bis 3,8 Millionen Sporen pro Sporenstand.
Die terminale Fallgeschwindigkeit liegt für L. clavatum bei 2,16 (± 0,11) cm*s-1 und für D. complanatum bei 2,25 (± 0,10) cm*s-1. Die Sporen haben einen Durchmesser von 29,5 (± 2,0) μm bzw. 32,3 (± 2,5) μm. Die gemessene Geschwindigkeit liegt deutlich unter der theoretischen und lässt sich damit erklären, da Sporen keine perfekten Kugeln sind und aufgrund ihrer stark reliefierten Oberfläche Turbulenzen erzeugt werden, die den Fall verlangsamen.
Die Anzahl der in Entfernungen bis 200 m zu einer sporenbildenden Population fliegenden Sporen wurde mithilfe von vertikalen klebenden Sporenfallen bei D. complanatum, D. tristachyum und L. clavatum bestimmt. Nur für die Population von L. clavatum mit 11358 reifen Sporenständen auf kleiner Fläche wurden weitere Berechnungen durchgeführt. Folgende Funktion beschreibt die Anzahl der durch die Luft fliegenden Sporen in einer Höhe von etwa 40 cm über dem Boden in Abhängigkeit zur Entfernung x: f(x) = 45878*x-2,302 (R² = 0,9979). Es konnten selbst in 200 m Entfernung noch einzelne Sporen an den Sporenfallen nachgewiesen werden. Da die maximale theoretische Ausbreitungsdistanz bei nur knapp 130 m liegt, selbst wenn ein konstant horizontal wehender Wind von 100 km/h angenommen wird, müssen aufwärtsgerichtete Luftströmungen eine entscheidende Rolle bei der Fernausbreitung spielen.
Die Ansiedlungsversuche wurden im Thüringer Schiefergebirge am Grünen Band bei Brennersgrün (D. alpinum und D. tristachyum) und im Pöllwitzer Wald (D. complanatum) durchgeführt. Als Vergleichsart wurde wieder L. clavatum verwendet. Die Sprossverpflanzungen verliefen insgesamt erfolgreich mit einer Überlebensrate von 8% für D. alpinum, 17% für D. complanatum, 8% für D. tristachyum und 22% für L. clavatum. Der jährliche Rhizomzuwachs liegt bei 0,5 cm, 13,3 (± 1,8) cm, 7,5 cm bzw. 9,1 (± 4,0) cm für die entsprechenden Arten.
Die Vegetationsbedeckung vorher abgeplaggter Flächen liegt zwischen 39 und 53% nach zwei Jahren, jedoch mit großen Unterschieden selbst zwischen benachbarten Flächen und wird hauptsächlich durch ein schnelles Mooswachstum bestimmt.
Nach etwa fünf Monaten sind keine Sporen auf sterilem Nährstoffmedium gekeimt, obwohl diese unterschiedlich behandelt wurden, zum Beispiel mit Rauchgas, Hitze, konzentrierter Schwefelsäure oder durch Mörsern. Auch die Keimungsversuche an den Wuchsorten waren nach 2,5 Jahren erfolglos. Eine Erklärung kann ein Dormanzstadium unbekannter Dauer vor der Keimung sein.
Der Anzahl der jährlich gebildeten vertikalen Sprossbüschel wurde indirekt für je eine Population für D. zeilleri (2,5/Jahr) und D. issleri (2,0/Jahr) bestimmt, indem der Quotient aus der Anzahl der Sprossbüschel an der längsten Rhizomverbindung und dem bekannten Alter des Standorts ermittelt worden ist. Die Zugehörigkeit von Rhizomstücken zu einem Klon wurde mit der AFLP-Methode abgesichert. Die meisten Populationen in Deutschland werden demnach mehrere Jahrzehnte alt, jedoch ohne beobachtete Verjüngung über Prothallien. Eine Erklärung könnten die immer noch sehr geringen pH-Werte in den Unterböden von 3,6 (± 0,24) sein, die giftige Al3+-Ionen pflanzenverfügbar machen.
Forests influence the climate of our Earth and provide habitat and food for many species and resources for human use. These valuable ecosystems are threatened by fast environmental changes caused by human-induced climte change. Negative growth responses and higher tree mortality rates were associated with increasing physiological stress induced by global warming. Especially boreal forests at high latitudes in the arctic region are threatened, a region predicted to undergo the highest increase in temperature during the next decades. Therefore, it is important to assess the adaptation potential in trees. For this purpose, I studied natural populations of white spruce (Picea glauca (Moench) Voss) in Alaska. In this thesis, I present three scientific papers in which my co-authors and I studied the phenotypic plasticity and genetic basis of tree growth, wood anatomy and drought tolerance as well as the genetic structure of white spruce populations in contrasting environments. We established three sites representing two cold-limited treelines and one drought-limited treeline with a paired plot design including one plot located at the treeline and one plot located in a closed-canopy forest, respectively. Additionally, the study design included one forest plot as reference. Within the entire project, in total 3,000 trees were measured, genotyped and dendrochronological data was obtained. I used several approaches to estimate the neutral and adaptive genetic diversity and phenotypic plasticity of white spruce as a model organism to explore the adaptation potential of trees to climate change.
In the first chapter, I combined neutral genetic markers with dendrochronological and climatic data to investigate population structure and individual growth of white spruce. Several individual-based dendrochronological approaches were applied to test the influence of genetic similarity and microenvironment on growth performance. The white spruce populations of the different sites showed high gene flow and high genetic diversity within and low genetic differentiation among populations, rather explained by geographic distance. The individual growth performances showed a high plasticity rather influenced by microenvironment than genetic similarity.
In the second chapter, I investigated the populations of the drought and cold-limited treeline sites to decipher the underlying genetic structure of drought tolerance using different genotype-phenotype association analyses. Based on tree-ring series and climatic data, growth declines caused by drought stress were identified and the individual reaction to the drought stress event was determined. A subset of 458 trees was genotyped, using SNPs in candidate genes and associated with the individual drought response. Most of the associations were revealed by an approach which took into account small-effect size SNPs and their interactions. Populations of the contrasting treelines responded differently to drought stress events. Populations further showed divergent genetic structures associated with drought responsive traits, most of them in the drought-limited site, indicating divergent selection pressure.
In the third chapter, my co-authors and I studied xylem anatomical traits at one of the cold-limited treeline sites to investigate whether genetic or spatial grouping affected the anatomy and growth of white spruce. Annual growth and xylem anatomy were compared between spatial groups and between genetic groups and individuals. Overall, wood traits were rather influenced by spatial than genetic grouping. Genetic effects were only found in earlywood hydraulic diameter and latewood density. Environmental conditions indirectly influenced traits related to water transport.
In conclusion, white spruce showed a high genetic diversity within and a low genetic differentiation among populations influenced by high gene flow rates. Genetic differences among populations are rather caused by geographical distance and therefore genetic drift. Differing selection pressure at the treeline ecotones presumably lead to divergent genetic structures underlying drought-tolerant phenotypes among the populations. Thus, adaptation to drought most likely acts on a local scale and involves small frequency shifts in several interacting genes. The identified genes with adaptive growth traits can be used to further exlore local adaptation in white spruce. Tree growth and wood anatomical traits are rather influenced by the environment than genetics and showed a high phentoypic plasticity. The high genetic diverstiy and phenotypic plasticity of white spruce may help the species to cope with rapid environmental changes. Still, additional work is needed to further explore adaptation processes to estimate how tree species reacted to rapid climate change. The presented thesis shed some light on the adaptation potential of trees by the example of white spruce using several approaches.
Myxomycetes or Myxogastria (supergroup Amoebozoa) are one of several Protistean groups dispersing via airborne spores. The model organism for the group, so far exclusively studied in a laboratory environment, is Physarum polycephalum. Here, molecular evolution, distribution and the ecology of spores dispersal was investigated for the non-model species Physarum albescens. This nivicolous myxomycete fruits with snow melt in most mountain ranges of the northern hemisphere and disperses via spherical, dark-colored and melanin-rich spores. Fruit body development and subsequent spore dispersal occurs within a short time window of a few days. At this time, the fruiting plasmodium is fully exposed to the harsh environment if the protecting snow melts away. The spores, with a diameter of 10–13 µm of the typical size for myxomycetes, can potentially reach all suitable habitats worldwide, which led to the assumption that not only Ph. albescens but most myxomycete species should be ubiquitously distributed over the world.
In the first part of this study (article 1), the question was, if spore dispersal can realize a gene flow sufficient to meet the above-mentioned assumption. A total of 324 accessions of Ph. albescens, collected all over the northern hemisphere, was sequenced for 1-3 genetic markers (SSU, EF1A, COI), and 98 specimens were further analyzed using the genotyping by sequencing technique. As a result, at least 18 reproductively isolated units, which can be seen as cryptic biological species, emerged as phylogroups in a three-gene phylogeny, but as well in a SNP-based phylogeny and were confirmed by a recombination analysis between the three markers. However, this evolutive radiation is not simply caused by geographic fragmentation due to low dispersal capability: within a certain region, multiple phylogroups coexisted next to each other, although some appeared to be regional endemics. Most likely, mutations in mating-type genes, as shown to exist for the cultivable Ph. polycephalum, are the main drivers of speciation. This challenges the hypothesis of ubiquitous distribution of Ph. albescens and corroborates the results of the few available studies for other myxomycete species. In addition, groups of clonal specimens, mostly but not always restricted to a certain slope or valley indicated that sexual and asexual reproduction coexists in the natural populations of Ph. albescens.
In the second part (articles 2), the fundamental niche for Ph. albescens was described using all available records for the species. The resulting set of 537 unique occurrence points was subjected to a correlative spatial approach using the software MaxEnt. In dependence on the predictor variables three species distribution models emerged which differed only in details. The first consisted of only 19 bioclimatic variables and an elevation map from the WorldClim dataset. The second was corrected for pseudo-absences resulting from missing survey activities, and the third was expanded with an additional categorical environment variable on snow cover. High mean AUC (area under the curve) values above 0.97 could be reached with all three models. Variables for snow cover, precipitation of the coldest quarter (of the year), and elevation correlated highly to predict the distribution of Ph. albescens. Only in mid-northern latitudes, elevation alone was a good predictor, but it would cause false-positive predictions in arid mountain ranges and failed to explain occurrence in lowland sites at higher latitudes. Mountains in humid climates showed the highest incidences, confirming recent studies that long-lasting snow covers combined with mild summers are crucial for the ecological guild of nivicolous myxomycetes, with Ph. albescens as a typical species.
Spore size is crucial for dispersal ability and should thus be a character under strong selection. In addition, spores carrying two nuclei with opposite mating types should have a colonization advantage. This was the hypothesis for the last part of this study (articles 3 and 4), which investigated this trait in a quantitative manner. This required a method to analyze thousands of spores automatically (article 3) and with high precision for size and the number of nuclei enclosed. Human errors should be excluded, to reveal even subtle differences in the resulting spore size distributions. Two challenges had to be met for this approach. First, a preparation technique was developed to reduce false segmentations due to overlaying spores by aligning spores on one common plane with a high-frequency vibration device. Second, the segmentation process was automated to allow separating spores that are densely packed in the respective images. A machine learning algorithm was set up and trained to reliable identify and measure dark-colored spores. The technique produced consistent results with high accuracy, and the large number of spores allowed to compile spore size distributions, to check for the constancy of this character, which is impossible with manual measurements limited to low numbers.
The resulting spore size distributions, obtained from over 80 specimens (article 4), were mostly narrow, which is in accordance with our hypothesis. Spore size was as well fairly constant within fructifications from one colony. However, mean spore size within different accessions of Ph. albescens showed large variation (ca. 10%, a range often indicated to key out different morphospecies of myxomycetes), and this was explained only by a minor part with differences between biospecies. Not much smaller (8%) was the variation within a group of clonal specimens collected within 25 m distance. This points to a strong influence of environmental factors even at a micro spatial scale, perhaps caused by microclimatic differences and high phenotypic plasticity for spore size. The influence of large-scale covariates like altitude or latitude was negligible. However, spore size correlated with the variance in this trait, indicating that oversized spores may be caused by detrimental environmental conditions. Two aberrations in spore development were found: First, a few specimens showed a multimodal distribution for spore size with two or even three discernible spore populations. The estimated volumes of those populations correspond to a multiple of the first and most abundant conspicuous spore size population. Second, not all spores were uninucleate as to be expected for meiotic products. This was revealed by fluorescence signals from staining the same spores with DAPI, with a second machine learning algorithm trained to identify the nuclei in a spore. A few specimens showed a significant proportion of binucleated spores in the size range of normal-sized ones, and these specimens were not the ones with multimodal spore size distributions. This indicates that the negative impacts (inbreeding) of multinucleate spores should outweigh a possible colonization advantage and is in accordance with the high genetic diversity found in the worldwide population of Ph. albescens, indicating predominantly sexual reproduction in wild populations of myxomycetes.
Global climate change is occurring all over the world, but in the Arctic the climate is changing more rapidly and drastically than in many other parts of our planet. Many species that are already at their climatic limit need to adapt to recent climate conditions or migrate in order to not go extinct. The possibilities of adaption include phenotypic plasticity and adaptation to various extents. This is also the case for white spruce P. glauca, which belongs to the conifers and thus in the largest group of gymnosperms still living today. Among the approx. 600 extant conifer species white spruce is one of the most widespread trees in North American boreal forests. Its range extends from 69° N in the Canadian Northwest Territories to the Great Lakes at about 44° N, where it occurs from sea level to an altitude of about 1520 m (Burns and Honkala, 1990). Site related, climate-dependent differences in white spruce reproduction can be seen as a strategy to survive under the harsh climatic conditions at Alaska's treelines: Besides sexual reproduction, the vegetative propagation occurs in the white spruce as an additional reproductive mechanism. This can be realized by "layering" when the lower branches of the tree crown touch the ground and develop roots to later grow as a separate individual with or without a connection to the mother tree. Known as other mechanisms of vegetative propagation are also the rooting of fallen trees which were not completely uprooted, and the "root suckering", in which new shoots sprout from the roots of the tree. However, the latter was not yet observed in the genus Picea. With the help of short, repetitive, non-coding sequences in the genome, which are therefore not subject to selection and are called microsatellites, these clones can be determined by genotyping.
For this purpose, using different polymorphic microsatellites, an individual multilocus genotype is created for each tree, by means of which it can be compared with all other trees of the same species.
In the first part of this work (article I), the occurrence of clones in three study areas at Alaskan treelines are examined and the reasons for their appearance in variable numbers are discussed. For this purpose, 2571 white spruces (P. glauca) were genotyped and their position was determined via differential GPS in the field. The percentage of clonal trees is higher in areas with harsh climatic conditions and correlates with the height of the lowest branches of the tree crown. This suggests that the vegetative propagation of white spruce is a backup strategy for times when climatic conditions hamper sexual reproduction. The correlation between clone numbers and tree crown height suggests "layering" as the main mechanism for cloning whereas selection for vegetative reproduction seems to be very unlikely shown by the results for genetic differentiation between the clonal and the singleton trees in this study.
In the second part of this work (articles II and III), the influence of environmental factors and phenotypic traits on the mycobiome of the needles (including all fungi living on (epiphytic) and in (endophytic) the needles) in our study areas in Alaska was investigated. The mycobiome of the white spruce needles was chosen as a proxy for the parasite infection rate by fungi and thus serves as a fitness parameter. For this purpose, all epiphytic and endophytic fungal species were analyzed by a metabarcoding analysis.
In article II, 48 trees of one study area at Alaska’s northern treeline (Brooks Range) were examined for differences in mycobiome due to genetic differentiation, phenotypic characteristics and / or habitat characteristics. The trees used for this study were sampled from two adjacent plots on a south-facing mountain slope with an elevation gradient from 875 to 950 meters above sea level. It could be shown that, in contrast to the trees genotype, the height above sea level, the mountain slope, as well as the height and age of the trees have a significant impact on the mycobiome. The genetic differentiation between the tree individuals, however, showed no significant effect.
Based on article II we examined the mycobiome composition of a total of 96 trees in 2 plots (16 trees each) at three sites in Alaska over a distance of 500 kilometers. Additionally, we sampled needles of two different ages for each tree (current year and three years old needles) summing up to 192 samples in total. The incentive of this study (article III) was to investigate the influence of origin and age of spruce needles on their mycobiome and if there is a genetic predisposition that is related to the fungal species community. In addition, the sampling design was improved by collecting needles from all four orientations (North, South, East and West) and sampling trees at a standardized distance to each other to avoid systematic errors. Comparable to article II the influence of the trees genetics on the species community of the epiphytic and endophytic fungi of the white spruce needles seems to be very unlikely. In contrast, a significant influence of the geographic origin and the needle age on the species structure of the needle inhabiting fungal species was found. The phenotypic tree traits height and dbh (diameter at breast height) had only minor influence and did in fact explain less than 2% of the mycobiome variance. Using Illumina sequencing, 10.2 million reads from the nucleotide sequence between the internal transcribed spacer (ITS) genes could be obtained, which yielded in 1575 ribotypes (called operational taxonomic unit, OTU) for the fungi. These were compared with a reference database to compare and assign them to known fungal species. For example, 942 OTUs with >95% similarity could be identified as known species, with 1975 samples identified on genus level and 2683 when determined to family level. The most pronounced difference between the two studies (article II and III) were due to the fungal species of the class of Pucciniomycetes, more specifically the genus Chrysomyxa which belongs to the rust fungi and is plant pathogenic. In the study of article II (sampling in 2012), Pucciniomycetes accounted for only a minor portion of the assigned DNA sequences. In the second study (article III, sampling in 2015) they accounted for more than half of all basidiomycetes found, which in turn contain 20.0% of all DNA sequences, the second largest phylum found beside Ascomycetes (51.4%).
In Mitteleuropa kommen innerhalb der Gattung Diphasiastrum neben drei Ausgangsarten (D. alpinum, D. complanatum, D. tristachyum) drei Taxa hybridogenen Ursprungs vor (D. x issleri = D. alpinum x D. complanatum; D. x oellgaardii = D. alpinum x D. tristachyum; D. x zeilleri = D. complanatum x D. tristachyum). Alle sechs Taxa sind diploid. Die homoploiden Hybriden unterscheiden sich sowohl morphologisch als auch hinsichtlich ihres Kern-DNA-Gehaltes deutlich voneinander und nehmen eine intermediäre Stellung zwischen ihren Elternarten ein. Daher ist zu vermuten, dass es genetische Schranken für Rückkreuzungen gibt. Außer den regelmäßig auftretenden diploiden Hybriden konnten drei sehr seltene triploide Diphasiastrum-Hybriden nachgewiesen werden. Auf Grund ihres Kern-DNA-Gehaltes und der Morphologie kann auf folgende Kombinationen geschlossen werden:
Diphasiastrum alpinum x D. x issleri (Genomformel AAC),
Diphasiastrum alpinum x D. x oellgaardii (Genomformel AAT),
Diphasiastrum complanatum ssp. complanatum x D. x issleri (Genomformel ACC).
Es kann vermutet werden, dass diese triploiden Hybriden durch eine Kreuzbefruchtung zwischen einem diploiden Gametophyten, entstanden aus einer Diplospore, und einem haploiden Gametophyten hervorgegangen sind. Diplosporen könnten auch zur Vermehrung der diploiden Hybriden mittels Sporen beitragen; allerdings sind sie bei Flachbärlappen noch nicht experimentell eindeutig nachgewiesen. Bisherige Untersuchungen dreier genetischer Marker (cp, RPB, LFY) sowie die Ergebnisse einer AFLP-Analyse legen jedoch eine überwiegende de-novo-Entstehung durch primäre Kreuzungsereignisse nahe.
Die drei Elternarten unterscheiden sich hinsichtlich ihrer genetischen Diversität erheblich. Während von D. alpinum mindestens zwei genetische Linien existieren, ist D. tristachyum offensichtlich wenig variabel. Die größte genetische Vielfalt weist D. complanatum auf, für das eine sexuelle Reproduktion durch flowzytometrische Untersuchungen der gametophytischen Generation nachgewiesen werden konnte. Auch die Hybriden sind genetisch nicht einheitlich, was für unabhängige Entstehungsereignisse spricht.
Die Vertreter der Gattung Diphasiastrum weisen einen ausgeprägten Pioniercharakter auf und können Lebens-räume mit frühen Sukzessionsstadien erfolgreich besiedeln. Hier bilden sie durch ihr klonales Wachstum flächig ausgedehnte Bestände (Klone) aus. Diese können, längerfristig geeignete Standortbedingungen vorausgesetzt, ein Alter von vielen Jahrzehnten bis zu mehreren Hundert Jahren erreichen. Mit ihren staubfeinen Sporen sind Flachbärlappe auch zur Besiedlung von Gebieten, die von bestehenden Vorkommen weiter entfernt sind, mittels Langstreckentransport durch die Luft befähigt.
Flachbärlappe sind obligate Dunkelkeimer mit sich über mehrere Jahre erstreckenden Entwicklungszyklen. Die heterotrophen unterirdisch lebenden Gametophyten benötigen für Ihre Entwicklung Mykorrhizapilze. Funde von Gametophyten des Alpen-Flachbärlapps boten die Möglichkeit, den assoziierten Mykorrhizapilz morphologisch und genetisch zu untersuchen. Dieser wurde als zur Sebacinales-Gruppe B (Agariomycota) zugehörig identifiziert. Diese Pilzgruppe ist auch als Mykorrhizapartner von Ericaceen (Heidekrautgewächse) bekannt. Da keine Hinweise auf eine Mykorrhizierung des sporophytischen Bärlapp-Gewebes gefunden wurden, ist die Beziehung zwischen Pilz und Bärlapp möglicherweise nicht symbiotischer sondern parasitischer Natur. Der mykoheterotrophe Bärlapp-Gametophyt würde in diesem Fall epiparasitisch auf Vertretern der Ericaceen leben. Dies würde die regelmäßige Vergesellschaftung von Flachbärlappen mit verschiedenen Heidekrautgewächsen erklären. Eine ericoide Mykorrhiza bei Bärlappen, bestehend aus einem Netzwerk zwischen Ericaceen, Mykorrhizapilzen und Bärlapp-Gametophyten, wurde zuvor nicht beobachtet.
Die aktuelle Verbreitung der Flachbärlappe ist in den meisten Landesteilen Deutschlands und auch in einigen anderen Regionen Mitteleuropas weitgehend bekannt. Ihre früheren Arealbilder sind hingegen erst für Teilgebiete geklärt, was auf ihre schwierige Bestimmbarkeit und der über Jahrzehnte in der botanischen Literatur bestehenden taxonomischen Verwirrung zurückzuführen ist. Die frühere Verbreitung konnte auf der Basis kritischer Herbarrevisionen bislang für Niedersachsen und Bremen, Nordrhein-Westfalen, Thüringen und Teilgebiete Hessens und Bayerns rekonstruiert werden.
Die standortökologischen Ansprüche der Flachbärlapp-Sippen sind für Deutschland und einige Regionen angrenzender Länder hingegen gut untersucht. Es werden Sandböden mit unterschiedlich hohen Lehm- und Tonanteilen besiedelt, die relativ humusreich sind und größere Skelettanteile aufweisen können. Die Böden sind trocken bis frisch, reagieren sehr stark bis stark sauer (pH-Werte zwischen 2,9 und 4,5) und sind nährstoffarm (Stickstoffgehalte im Mittel zwischen 0,12 % und 0,25 %). Hinsichtlich ihrer Lichtansprüche unterscheiden sich die Flachbärlapp-Taxa erheblich. D. complanatum, D. tristachyum und ihre Hybride D. x zeilleri besiedeln recht heterogene Wuchsorte und sind sowohl an halbschattigen als auch lichtreichen Standorten zu finden (relativer Lichtgenuss meist zwischen 20 % und 80 %). D. alpinum und seine Hybriden D. x issleri und D. x oellgaardii bevorzugen dagegen offene Wuchsorte mit einem relativen Lichtgenuss zwischen 80 % und 100 %.
Die allermeisten Vorkommen von Flachbärlappen sind in Mitteleuropa heute an Sekundärstandorten anthropogenen Ursprungs zu finden. Primärstandorte stellen außerhalb des Alpenraumes die große Ausnahme dar. Die Vergesellschaftung der Flachbärlappe ist gut dokumentiert. Neben verschiedenen von Nadelhölzern dominierten Wald- und Forstgesellschaften (Leucobryo-Pinetum, Cladonio-Pinetum, Vaccinio myrtilli-Piceetum) treten sie in verschiedenen Vegetationstypen des Offenlandes mit lückiger und kurzrasiger Struktur auf (Vaccinio-Callunetum, Genisto anglicae-Callunetum, Violion- und Nardion-Gesellschaften, Festuca nigrescens-Agrostis capillaris-Bestände).
Die Flachbärlappe sind seit Jahrzehnten von einem dramatischen Bestandsrückgang betroffen und werden daher in den meisten nationalen Roten Listen Mitteleuropas als stark gefährdet oder sogar als vom Aussterben bedroht geführt. Hauptgrund ist das fast vollständige Verschwinden ihrer ehemaligen Lebensräume durch Aufgabe traditioneller Nutzungsformen und Änderungen in der forstlichen Bewirtschaftung. Die zunehmende Eutrophierung durch die ständig intensiver werdende Landwirtschaft stellt einen sukzessionsbeschleunigenden Faktor dar und bedingt, dass die Verweildauer eines Bestandes an einem Sekundärstandort ohne pflegende Eingriffe mittlerweile auf maximal 10 bis 15 Jahre gesunken sein dürfte. Allerdings lassen sich die Bestände durch das regelmäßige manuelle Entfernen bzw. Eindämmen pflanzlicher Konkurrenten stützen und ihre Überlebensdauer damit deutlich erhöhen, wie Erfahrungen im Rahmen diverser Artenhilfsprogramme in verschiedenen Teilen Deutschlands gezeigt haben. Auch die Flachbärlapp-Hybriden bilden langlebige und flächig ausgedehnte Klone aus und können fernab einer oder sogar beider Elternarten auftreten. Unabhängig von ihrer noch ungeklärten generativen Reproduktionsfähigkeit verhalten sie sich wie unabhängige Arten und sollten daher naturschutzfachlich auch als solche bewertet werden.
Der starke Rückgang sowie eine hohe internationale Verantwortlichkeit Deutschlands für einige Diphasiastrum-Taxa, speziell für D. x issleri und D. x oellgaardii, zeigen die dringende Notwendigkeit für gezielte Artenhilfsprogramme für diese faszinierende Pflanzengruppe.
Genetic and phenotypic variation of Phragmites australis (common reed) under environmental stressors
(2023)
Both climate change and human land use have a profound influence on peatlands. At the same time, peatlands play a vital role in global carbon cycles, and their conservation offers a powerful tool to mitigate climate change. Paludiculture, focused on wet and rewetted peatlands, offers sustainable land use alternatives over destructive use, like draining for agriculture, or turf mining. Within paludiculture, the common reed (Phragmites australis) stands out as a highly promising and commonly employed plant. Studying the genetic variation of this focal plant is crucial for supporting wetland management and restoration initiatives, since the clonal structure of a population significantly impacts its fitness and
adaptability in changing environments.
The primary aim of this thesis is to elucidate the genetic variation patterns existing within P. australis populations in northeastern Germany, investigating their connections with phenotypic traits and environmental stressors. To accomplish this aim, three studies were conducted, resulting in three publications. The first study examined genetic variation of 24 populations of P. australis in Mecklenburg-Western Pomerania (Germany) and investigated how disturbances from water salinity, coastal regime and mowing affected population genetics and morphology. Analysis of 720 samples revealed a single, tetraploid, cytotype and supported the hypothesis of a unified large metapopulation of P. australis. Haplotypes and microsatellite alleles do not show a distinct geographic pattern, but clones are geographically limited. This indicates effective gene flow via seeds and pollen but limited spread through rhizomes. Populations exposed to brackish water salinity exhibited higher genetic diversity and had different haplotype composition, likely due to increased disturbance promoting seedling establishment and restricting clone extension. Notably,
both mowing and water salinity negatively affected stem width and height, while utilized neutral genetic markers were not connected with these traits. Overall, the first study highlighted effective gene flow, substantial plasticity, and underscored the importance of disturbance in accumulating genetic diversity.
The second study focuses on analyzing the variation in phenotypic traits among distinct genotypes across gradients of water levels and nutrient availability. A mesocosm experiment involving five P. australis genotypes from northeastern Germany examined growth, morphology, biomass, functional traits, gene expression, and revealed significant variability among genotypes. However, functional traits were unable to predict genotype performance based on distinct plant economic strategies. Nevertheless, the notable variation observed emphasizes the necessity for a comprehensive, long-term large-scale study to select the most suitable genotypes for successful paludiculture.
The thirst study focuses on the dynamics of genetic and phenotypic variation within a population of P. australis. The study involved an investigation of a P. australis population established in 1996/97 by monoclonally and polyclonally planting. Through microsatellite genotyping, it was observed that all nine genotypes of the monoclonal plots could be genetically characterized and exhibit only minimal invasion from other genotypes. Similarly, the polyclonal plots preserved high clonal diversity, without any dominance of a single genotype. The study also revealed significant differences among five genotypes in growth characteristics, morphology, persistence and invasiveness. Remarkably, despite being established with genotypes potentially not locally adapted, the genotypes exhibited extreme persistence. The genetic structure of the population remained stable for at least 24 years, irrespective of planting density or water level variations. These findings suggest that original number of genotypes primarily influenced the population genetic level and that farmers may have the capability to maintain favourable genotypes over extended periods, emphasizing the importance of selecting and maintaining these genotypes.
In summary, P. australis populations in northeastern Germany demonstrate effective gene flow but maintain a high level of their genetic and phenotypic variation. Even within a region, genotypes exhibit significant phenotypic differences under differing and stressful conditions, maintaining these differences over decades. Once established, a population of P. australis can retain a stable genetic composition over a long time, depending from the initial number and suitability of genotypes during establishment. Further extensive long-term selection studies, as well as investigations of the sources and mechanisms of adaptation to a stressful environment, will facilitate the successful selection of the most adapted genotypes with appropriate performance.