Refine
Document Type
- Doctoral Thesis (7)
Language
- English (7)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
- climate change (4)
- dendrochronology (4)
- Waldökologie (3)
- forest ecology (3)
- wood anatomy (3)
- Baumgrenze (2)
- Dendrochronologie (2)
- Klimawandel (2)
- Mikroklima (2)
- Scots pine (2)
Tree growth in northern and upper treeline ecotones of the circumpolar boreal forest is
generally limited by temperature, i.e., trees grow generally more under warm, and less under
cold climatic conditions. Based on the assumption that this relationship between tree growth
and climate is linear and stable through time, dendroclimatologists use tree rings as natural
archives to reconstruct past temperature conditions. Such tree-ring based reconstructions,
together with other natural archives (e.g., ice cores and pollen), constitute our understanding of
past climatic conditions that reach beyond modern instrumental records.
However, a steadily increasing amount of studies reports a recent reduction or loss of the
summer temperature signal for several species and sites of the boreal forest. Such a reduction
of temperature sensitivity results in temporally unstable climate-tree growth relationships,
which challenges the work of dendroclimatologists by potentially leading to miscalibrations of
past climatic conditions. On the upside, this shift in the trees’ climate sensitivity might point to
a shift in tree growth-limiting factors and thus serve as an early indicator of climate change
impacts. There is evidence that this recent reduction in temperature sensitivity might be caused
by the observed strong temperature increase at high latitudes, and thus temperature-induced
drought stress. Other potential drivers and amplifiers of this phenomenon are differing microsite
conditions (dry vs. wet soils) and factors inherent to trees, like genetic properties or age
effects.
In this PhD thesis, I systematically assessed the effects of frequently discussed drivers of
unstable climate-tree growth relationships (climate change, micro-site effects, genetical
predisposition) on two representative species of the boreal forest, white spruce in North
America and Scots pine in Eurasia, across various temporal and spatial scales. I used classical
(tree-ring width) and more novel (wood density, quantitative wood anatomy)
dendrochronological proxies to unravel the effects from annual to sub-monthly resolution.
More precisely, in chapter I, white spruce clones were compared to non-clones at two treeline
sites in Alaska to test whether their growth patterns differ, and whether white spruce clones are
generally suitable for dendroclimatic assessments. Clonal reproduction is frequent at treeline
due to harsh conditions, but might lead to competition among individuals due to the close
proximity among each other, which in turn might obscure their climatic signal. Second, I tested
the effect of warmer and drier climatic conditions on the summer temperature signal of Scots
pine in Eurasia (chapter II) and on the growing season moisture signal of white spruce in North
America (chapter III), respectively. Temperature-induced drought stress is expected to be the
most important driver of unstable climate-growth relationships in the boreal forest. I included
several sites across latitudinal (50-150 km) and longitudinal (1,000-2,200 km) gradients to
cover large parts of the species’ distribution ranges. Since Scots pine covers a wide range of
ecological habitats, I additionally tested the effect of dry and wet micro-site conditions on the
summer temperature signal of Scots pine in chapter II. Finally, in chapter IV, a systematic
literature review was carried out in order to investigate the distribution of unstable climategrowth
relationships in global tree-ring studies, and the usage of such series in climate
reconstructions. Furthermore, the scientific impact of these potentially inaccurate climate
reconstructions was assessed.
In this PhD project, warmer and drier climatic conditions led to temporally unstable climate
signals in both Scots pine (chapter II) and white spruce (chapter III), as expected. Unstable
climate-growth relationships were found for all tested tree-ring proxies and at all sites in North
America, and at most sites in Eurasia. Micro-site effects (chapter II) and clonal growth
(chapter I) had no significant effect on the climate sensitivity and high-frequency variability
of the tested species, but affected absolute growth. The review (chapter IV) revealed that the
phenomenon of unstable climate-growth relationships is globally widespread, and occurs
independent of tree species, geographic location, and tree-ring and climate proxies. While
reconstructions inferred from these unstable relationships are frequent and respective papers
have a high impact, the tree-ring community seems to increasingly recognize the challenge of
unstable climate-growth relationships.
With these findings, this PhD project helped to shed more light on the frequency, underlying
drivers, and the impact of unstable climate-growth relationships in boreal forest trees, as well
as underlying reaction processes in trees. Above all, this PhD project suggests that the loss of
climate sensitivity is caused by a change of growth limiting factors: temperature limitation
seems to be suspended in warmer and drier years for Scots pine in Eurasia, and moisture
limitation first arises under warm/dry conditions for white spruce in North America. Due to
plastic growth responses in trees, the general assumption in dendroclimatology – that climategrowth
relationships are stable through time – seems to be incompatible with the principle of
limiting factors (one factors is always most growth limiting).
To improve the validity of future climate reconstructions, statistical approaches considering
synchronously or changing climatic limiting factors need to be promoted, along with attempts
to select the best responding trees from a dataset. Furthermore, a better understanding of nonclimatic
factors potentially affecting tree growth (e.g., age, disturbance, soil parameters) is
needed. A growth reduction of mature and dominant white spruce trees sampled in this PhD
project seems likely under future warming conditions, with series of wood cells being valuable
early indicators of climate change effects in white spruce. However, inferences cannot be
extended to the entire stand due to the applied sample design. Projected climate warming will
probably lead to a further reduction of the summer temperature signal in trees of the northern
boreal forest, while wider consequences for forest growth and productivity are unclear.
Peatlands are wetland ecosystems covering a relatively small area of the World (~3%), but at the same time storing excessive amounts of carbon for a very long time (equivalent to the four times global annual net primary production). As carbon sinks, peatlands work in spite of their slow growth, absorbing carbon dioxide (CO2) through the photosynthetic activity of the peatland plants and their low growth rates, and because high groundwater table removes oxygen from the soil and slows down the decomposition of the dead plant matter. Because of the relative lack of the oxygen in the peat, especially compared to the mineral soils, methanogen populations in the peatlands are abundant, and releasing methane (CH4), a potent greenhouse gas, to the atmosphere. Therefore, peatlands are generally at the same time significant carbon sinks and stores as well as the methane sources. The balance among the two peatland gass fluxes (CO2 and CH4) will dictate the impact of any given peatland on the global climate and primarily driven by hydrology, in the form of the groundwater table levels.
Because of the slow decomposition rates, and from radiocarbon dating of the peat as well as the subfossil records buried in it, carbon stored in peatlands is locked for a very long time (centuries to millennia). It is, therefore, crucial to gain insights into the development of peatlands and their gas balance through time. One way to get both is by studying peatland hydrology in the form of the groundwater table levels and their historical variations. Unfortunately, intensive monitoring of peatland groundwater table, when available, is an only a recent endeavor. Therefore, we need to employ proxies to reconstruct the past by leveraging the present. In statistics, proxy variables are often used when the observations of the variable of interest, are either missing or too difficult to obtain.
In this thesis, I tested whether we can use the radial growth of the Scots pines growing on peat as proxies to the peatland hydrology. To that end, I studied growth responses of the peatland Scots pines. Other proxies can and are used for the reconstructions of the groundwater table levels, but tree-growth is widely used as one of the proxies to reconstruct past environments which is at the same time annually resolved.
First, I examined the growth ecology of the peatland Scots pines by looking at their intra-annual development and trying to find relationships between it and environmental factors while at the same time comparing it with the Scots pines growing at the forest sites. I first tried with wood anatomy and found that, unfortunately, peatland Scots pines do not form enough wood cells, and consequently do not have high temporal resolution, necessary to investigate the intra-annual patterns of the radial growth. Initial results from wood anatomical investigations were interesting none-the-less, indicating that peatland Scots pines might have smaller cell features than the Scots pines from forests, but might at the same time maintain Early/Latewood ratios of those same features.
After I found that wood anatomical series were not resolved enough I decided to go with dendrometers, linear displacement sensors which constantly monitor the variations of stem radius, to get insights into the intra-annual growth patterns of the peatland Scots pines. Before using dendrometers for ecological investigations, I was involved in implementing routines commonly used in the analysis of the dendrometer signals and bringing them to R in the form of the dendrometeR package.
At one peatland complex, I installed dendrometers on ten trees in total at both peatland and forest sites and compared the pattern of the standardized signal. I inferred from the comparisons and classifications that the signal from two sites was indistinguishable for the dendrometer series shorter than five days. Furthermore, the most important environmental factor driving the radial variation at the peatland site was hydrological, daily relative humidity, indicating further that peatland hydrology might indeed be the driver behind peatland Scots pine growth.
Finally, I looked at the growth responses of peatland Scots pines from central Estonia using dendrochronological methods. Peatland hydrology, in the form of the groundwater table levels, was indeed the environmental factor with the strongest, and also stationary, correlations with the radial growth of the peatland Scots pine. That relationship indicated that peatland Scots pines are indeed possible proxies for reconstructing past levels of the peatland groundwater tables.
My study further indicated that the growth response of the peatland Scots pines was non-linear, further complicating the reconstructions of the past peatland hydrology. However, the strength of the growth response was proportional to the general hydrological regime, expressed as median groundwater table level. As the hydrological regime of the peatland does not vary considerably on the annual scales, but more on decadal it might be more appropriate to find another, independent, proxy to the hydrological regime first, and than use annually resolved radial growth of the peatland Scots pine to reconstruct past levels of the peatland groundwater table.
Forests are key biomes linked to biogeochemical cycles, important species reservoirs and major ecosystem services providers. The observed global climate change in the 20th century has the potential to deeply affect the conservation, functioning and structure of these ecosystems. Expressed as rising average temperatures due to the increase in atmospheric concentration of greenhouse gases such as carbon dioxide, nitrate oxide and methane, pollutants which are mostly product of burning fuel for industrial activities. These long-term changes will be heterogeneous in time and space throughout the globe. For northeastern Germany, predictions indicate that summer temperature and winter precipitation will be at a constant rise, whereas summer precipitation is expected to decrease, conditions will increase the risk of drought conditions. The changes in long-term means will be accompanied by increased frequency of weather extremes. The overall effect of climate change, both its long- and short-term components and their interaction with forest growth is uncertain. Tree
species in the temperate forest are highly adapted to seasonal growth, active in late-spring and summer when temperature thresholds activate primary and secondary growth as well as leaf development, given sufficient water availability. During winter, they become dormant as an strategy to decrease damage by freezing temperatures. These adaptations ultimately determine species distributions as they occur along climate gradients within their ecological
optima. Thus climate change can have a significant effect on species distribution ranges and more locally it can change species abundances. Trees being sessile organisms, possess limited dispersal capacities and rely on their adaptation potential, both genetically through selection over generations and through phenotypic plasticity (e.g. the capacity of adapting to changing conditions within a lifetime).
Tree growth can be explored by dendrochronological methods, that is, by analyzing traits of annual xylem bands as produced by the vascular cambium. These traits are width, wood anatomical properties (e.g. cell wall thickness, lumen diameter), and isotopic composition.
Tree-rings are integrators of environmental conditions and indicators of vitality and productivity of trees and forests. Studying these traits allows to understand the effect of climate on growth and physiological function over decadal to centennial scales in the past and by it inform about future growth performance. However, environmental information is not trivially extracted from tree-rings. Environmental signals in tree-rings are often the result of
complex interactions of lagged meteorological conditions and tree-scale characteristics such as size, canopy status (i.e. social status), competition and stand density, among other factors. For this reason the monitoring of secondary growth as it unfolds, for example through dendrometer monitoring (i.e. record of the stem-radial variations at intra-annual temporal scales) and repeated sampling for the study of xylogenesis, is of major importance to understand climate-growth relationships and bridge the gap between dendroecological analysis atdifferent ecological scales (from single trees to stands to populations). Therefore this thesis contains contributions a) to the understanding of long-term climate shifts and its effect on tree growth for species in the Central European temperate forests through dendrochronological assessments and contributions b) to understanding intra-annual growth dynamics and
its relationship to meteorological conditions through the analysis of monitoring records. In the retrospective analysis chapters (I-III), first an assessment was performed of the climate-growth relationships of important species of these region which indicated that deciduous species’ growth (Fagus sylvatica, Quercus robur and Q. petreae) was influenced mostly by summer water availability. For Pinus sylvestris was late spring temperature. Negative correlations between winter temperatures and growth indices of deciduous species increased over the last decades, possibly linked to less snow cover of the soil leading to root damage causing growth reductions. Scots pine presented the opposite, as positive correlations with winter temperatures became more frequent, indicating that this species’ growth rates might
benefit from an elongation of the vegetation period. Afterwards the effect of stand characteristics in the climate response was explored. The climate signal of solitary oak trees growing in northeastern Germany was compared to oaks in closed stands. Solitary trees
expressed higher growth rates and drought signals, which endanger its conservation as dry conditions are expected to increase in the region. As in the temperate forest crowding effects are variable throughout a tree’s lifetime, as well as other limiting factors (e.g. climate), we subsequently developed a methodology based on analysis of individual tree-ring series rather than chronologies (site means) to disentangle these effects on heterogeneous samples and quantify them. By sampling all present crown classes in a site near Rostock (Germany), we found beech was mostly affected by water availability in the previous summer
and this effect was well represented throughout the population. For oak the main climatic driver of growth was previous October temperature with a low representation throughout the obtained sample. For beech, the main trait governing the variability around the response to the main climate driver of growth was cambial age, and for oak was crown-projection/size. On the prospective analysis chapters (IV-VI), monitoring datasets from the years 2013-2019 were used for the analysis of meteorological forcing of dendrometer series, the effect of a multi-year drought event and for the development of a method to combine continuous dendrometer records with discrete histological observations from xylogenesis analysis. The analysis of meteorological forcing on stem-radial variations indicated all observed species (beech, oak, hornbeam in this case) respond similarly to atmospheric water content whereas
the growth phenology displayed contrasting species differences. These findings indicate high-frequency variations in stem dynamics are similar between species as it reflects transpiration and water transport in the stem, whereas the timing of growth reflects life strategies and
wood anatomical adaptations. Next we evaluated the effect of the consecutive drought years 2018-2019 using dendrometer data (beech, oak, hornbeam and sycamore maple). The increment levels after the onset of drought in 2018 were not reduced for the observed individuals, whereas in 2019 all species showed decreased growth levels, particularly beech. Most likely the water moisture reservoirs were adequately filled in winter and spring before summer 2018, which lead to increased buffer capacity to withstand the harsh conditions for radial growth. However in winter, and the spring before the summer of 2019, there was not sufficient precipitation which lead to less resistance to the second bought of the drought event.
This illustrates the complex lagged meteorological effect on radial growth, which is easily obscured in retrospective dendroecological analysis and emphasizes the pivotal role of soil moisture and soil water storage in tree-growth analysis. As a final contribution, while recognizing the importance of prospective growth monitoring, we developed a software tool to visualize and combine dendrometer stem-radial variations with images of histological events, such as those obtained by microcores for xylogenesis analysis. Growth signals in dendrometers are often of smaller magnitude than variations related to stem-water dynamics. By comparing them with histological images of wood-formation it is possible to accurately assign growth phases to dendrometer series and optimize their assessment. The advancement in methodological approaches to study intra-annual tree growth data is of major importance in the context of permanent ecological monitoring plots and its role in the assessment of the consequences of climate change on forest growth and conservation.
Overall the findings of this thesis indicate that climate change impacts in the temperate forest of Central Europe will be and have been varied depending on the species considered with stand, site and tree-level conditions strongly modulating its consequences and even direction. Deciduous species, particularly beech, will be at risk due to decreased water availability during summer for which beech shows a high sensitivity. While oak seems to
be less prone to drought related growth reductions and it is plausible to consider changes in dominance towards drier sites, it is still at risk if vulnerability thresholds are crossed. Scots pine appears to be favored by the increased temperatures during late winter, although these are naturally found on poor sites or sites either too dry or too wet for other dominant deciduous species to establish. Nevertheless, Scots pine has been planted on a variety of site conditions and especially in northeastern Germany is among the most widespread and economically important forest trees. Furthermore, the individual variability we have found in climate responses indicates that heterogeneous stands contain resilient sub-populations that
could guarantee survivorship of the species after stark changes in climate means. However, it appears that strong enough stressors such as hotter droughts can trigger wide ecosystem changes with more efficiency than shifts in climate means. Due to this intra-annual growth
monitoring is particularly relevant to foretell ecosystem changes and to understand the complex relationships found in climate-growth analysis performed in dendroecological studies, as it permits to mechanistically understand how conditions outside the tree-ring formation
period affects wood formation.
Forests are ecologically important ecosystems, for example, they absorb CO2 from the
atmosphere, mitigate climate change, and constitute habitats for the majority of terrestrial
flora and fauna. Currently, due to increasing human pressure, forest ecosystems are
increasingly subjected to changing environmental conditions, which may alter forest growth
to varying degrees. However, how exactly different tree species will respond to climate
change remains uncertain and requires further comprehensive studies performed at different
spatial scales and using various tree-ring parameters.
This dissertation aims to advance the knowledge about tree-ring densitometry and
tree responses to climate variability and extremes at different spatial scales, using various
tree species. More specifically, the following aims are pursued: (i) to obtain and compare
wood density data using different techniques, and to assess variability among laboratories
(Chapter I). (ii) To investigate microsite effects on local and regional Scots pine (Pinus
sylvestris L.) responses to climate variability (Chapter II) and extremes (Chapter III),
using ring width (RW) and latewood blue intensity (LBI) parameters. (iii) To give a general
site- and regional-scales overview of Scots pine, pedunculate oak (Quercus robur L.), and
European beach (Fagus sylvatica L.) RW responses to climate variability (Chapter IV). (iv)
To discuss the challenges which may result from compiling tree ring records from different
(micro)sites into large-scale networks. The study area comprises nine coastal dune sites, each
represented by two contrasting microsites: dune ridge and bottom (Chapters II and III), and
310 different sites within the south Baltic Sea lowlands (Chapter IV).
The dissertation confirms that sample processing and wood density measuring are
very important steps, which, if not performed carefully, may result in biases in growth trends,
climate-growth responses, and climate reconstructions. The performed experiment proved
that the mean levels of different wood density-related parameters are never comparable due
to different measurement resolutions between various techniques and laboratories. Further,
the study revealed substantial biases using data measured from rings of varying width due
to resolution issues, where resolution itself and wood density are lowered for narrow rings
compared to wide rings (Chapter I).
The (micro)site-specific investigation showed that, depending on the species,
different climate variables (temperature, precipitation, or drought) constitute important
factors driving tree growth across investigated locations (Chapters II and IV). However,
there is evidence that the strength and/or direction of climate-growth responses differ(s)
between microsite types (Chapter II) and across sites (Chapter IV). Moreover, climategrowth
responses are non-stationary over time regardless of the tree species and tree-ring
parameter used in the analysis (Chapters II and IV). There are also differences in RW and
LBI responses to extreme events at dune ridge and bottom microsites (Chapter III).
The regional-scale investigations revealed that climate-growth responses (strength
and non-stationarity) are quite similar to those observed at the local scale. However,
compiling RW or LBI measurements into regional networks to study tree responses to
extreme events led to weakened signals (Chapter III).
The findings presented in Chapters II and IV suggest that the strength, direction,
and non-stationary responses are very likely caused by several climatic and non-climatic
factors. The mild climate in the south Baltic Sea region presumably does not constitute a
leading limiting growth factor, especially for Scots pine, whose distribution extends from
southern to northern Europe. Thus, the observed climate-growth responses are usually of
weak to moderate strength. In contrast, for other species reaching their distribution limit at
the Baltic coast, the climatic signal can be very strong. However, the observed findings also
result from the effects of microsite conditions, and potentially other factors (e.g.,
management, stand dynamic), which all together alter the physiological response of the tree
at a local scale. Although climate at the south Baltic Sea coast is mild, extreme climate events
may occur and affect tree growth. As demonstrated (Chapter III), extreme climate events
affected tree growth across dune sites, however, to varying degrees. The prominent
differences in tree responses to extreme climate events were significant at the local scale but
averaged out at the regional scale. This is very likely associated with observed microsite
differences, where each microsite experiences different drivers and dynamics of extreme
growth reductions.
This dissertation helped to demonstrate that integrating local tree-ring records into
regional networks involves a series of challenges, which arise at different stages of research.
In fact, not all possible challenges have been discussed in this dissertation. However, it can
be summarized that several steps performed first at the local scale are very important for the
quality and certainty of climate-growth responses, tracking tree recovery after extreme
events, and potential climate reconstructions at the larger scale. Among them, identification
of microsite conditions, sample preparation, and measurement, examination of growth
patterns and trends, and identification of a common limiting growth factor are very
important. Otherwise, the compilation of various tree-ring data into a single dataset could
lead to over- or underestimation of the results and biased interpretations.
Dendrochronology, the science of tree-rings is a tool which has been widely used for many years for understanding changes in the environment, as trees react to environmental changes over time. In the contemporary situation, where climate warming in the Arctic is unequivocal and its effects on the Alpine and tundra ecosystems are seen pronouncedly in the past decade, the role of dendro-studies and the use of trees and shrubs alike as proxies of change has become critical. Studies clearly indicate that warming in the Arctic and Alpine tundra has resulted in increased vegetation in recent years. Shrubs, in these sensitive ecosystems, have proven to be highly instrumental as they likely benefit from this warming and hence are good indicators and auditees of this change. Therefore, in this study, we investigate the potential of shrubs in the evolving field of dendro-ecology/climatology.
Studies from classical dendrochronology used annual rings from trees. Further, because of shrub sensitivity to contemporary change, shrub-based dendrochronological research has increased at a notable scale in the last decade and will likely continue. This is because shrubs grow even beyond the tree line and promise environmental records from areas where tree growth is very limited or absent. However, a common limitation noted by most shrub studies is the very hard cross-dating due to asynchronous growth patterns. This limitation poses a major hurdle in shrub-based dendrochronological studies, as it renders weak detection of common signals in growth patterns in population stands. This common signal is traced by using a ‘site-chronology’.
In this dissertation, I studied shrub growth through various resolutions, starting from understanding radial growth within individuals along the length of the stem, to comparison of radial growth responses among male and female shrubs, to comparing growth responses among trees and shrubs to investigation of biome-wide functional trait responses to current warming. Apart from Chapter 4 and Chapter 6, I largely used Juniperus communis sp. for investigations as it is the most widely distributed woody dioecious species often used in dendro-ecological investigations in the Northern Hemisphere.
Primarily, we investigated radial growth patterns within shrubs to better understand growth within individuals by comparing different stem-disks from different stem heights within individuals. We found significant differences in radial growth from different stem-disks with respect to stem heights from same individuals. Furthermore, we found that these differences depending on the choice of the stem-disk affect the resulting site-chronology and hence climate-sensitivity to a substantial extent and that the choice of a stem-disk is a crucial precursor which affects climate-growth relationships.
Secondly, we investigated if gender difference – often reported causing differential radial growth in dioecious trees – is an influential factor for heterogeneous growth. We found that at least in case of Juniperus communis. L and Juniperus communis ssp nana. WILLD there is no substantial gender biased difference in radial growth which might affect the site-chronology. We did find moderate differences between sexes in an overall analysis and attribute this to reproductive effort in females.
In our study to test the potential of shrubs for reconstruction, we used a test case of Alnus viridis ssp crispa. We found a strong correlation between ring-width indices and summer temperature. Initially, the model failed the stability tests when we tested the stability of this relation using a response function model. However, using wood-anatomical analysis we discovered that this was because of abnormal cell-wall formation resulting in very thin rings in the year 2004. Pointer year analysis revealed that the thin rings were caused because of a moth larval outbreak and when corrected for these rings the model passed all stability tests.
Furthermore, to see if trees and shrubs growing in same biomes react to environmental changes similarly, a network analysis with sites ranging from the Mediterranean biome to the Ural Mountains in Russia was carried out. We found that shrubs react better to the current climate warming and have a decoupled divergent temperature response as compared to coexisting trees. This outcome reiterated the importance of shrub studies in relation to contemporary climate change. Even though trees and shrubs are woody forms producing annual rings, they have very different growth patterns and need different methods for analysis and data treatment.
Finally, in a domain-wide network analysis from plant-community vegetation survey, we investigated functional relationships between plant traits (leaf area, plant height, leaf nitrogen content, specific leaf area (SLA), and leaf dry matter content (LDMC)) and abiotic factors viz. temperature and soil moisture. We found a strong relation between summer temperature and community height, SLA and LDMC on a spatial scale. Contrarily, the temporal-analysis revealed SLA and LDMC lagged and did not respond to temperature over the last decade. We realized that there are complex interactions between intra-specific and inter-specific plant traits which differ spatially and temporally impacting Arctic ecosystems in terms of carbon turn over, surface albedo, water balance and heat-energy fluxes. We found that ecosystem functions in the Arctic are closely linked with plant height and will be indicative of warming in the short term future becoming key factors in modelling ecosystem projections.
Individual white spruce (Picea glauca (Moench) Voss) growth limitations at treelines in Alaska
(2018)
White spruce (Picea glauca (Moench) Voss) is one of the most common conifers in Alaska and various treelines mark the species distribution range. Because treelines positions are driven by climate and because climate change is estimated to be strongest in northern latitudes, treeline shifts appear likely. However, species range shifts depend on various species parameters, probably most importantly on phenotypic plasticity, genetic adaptation
and dispersal. Due to their long generation cycles and their immobility, trees evolved to endure a wide variety of climatic conditions. In most locations, interannual climate variability is larger than the expected climate change until 2100. Thus treeline position is typically thought of as the integrated effect of multiple years and to lag behind gradual climate change by several decades. Past dendrochronological studies revealed that growth of white spruce in Alaska can be limited by several climatic variables, in particular water stress and low temperatures. Depending on how the intensity of climate warming, this could result in a leading range edge at treelines limited by low temperatures and trailing treelines where soil moisture is or becomes most limiting. Climate-growth correlations are the dendrochronological version of reaction norms and describe the relationship between an environmental variable and traits like tree-ring parameters (e.g. ring width, wood density, wood anatomy). These correlations can be used to explore potential effects of climate change on a target species. However, it is known that individuals differ with respect to multiple variables like size, age, microsite conditions, competition status or their genome. Such individual differences could be important because they can modulate climate-growth relationships and consequently also range shifts and growth trends. Removing individual differences by averaging tree-ring parameters of many individuals into site chronologies could be an oversimplification that might bias estimates of future white spruce performance. Population dynamics that emerge from the interactions of individuals (e.g. competition) and the range of reactions to the same environmental drivers can only be studied via individual tree analyses. Consequently, this thesis focuses on factors that might alter individual white spruce’ climate sensitivity and methods to assess such effects. In particular, the research articles included explore three topics:
1. First, clones were identified via microsatellites and high-frequency climate signals of clones were compared to that of non-clonal individuals. Clonal and non-clonal individuals showed similar high-frequency climate signals which allows to use clonal and non-clonal individuals to construct mean site chronologies. However, clones were more frequently found under the harsher environmental conditions at the treelines which could be of interest for the species survival strategy at alpine treelines and is further explored in the associated RESPONSE project A5 by David Würth.
2. In the second article, methods for the exploration and visualization of individual-tree differences in climate sensitivity are described. These methods represent a toolbox to explore causes for the variety of different climate sensitivities found in individual
trees at the same site. Though, overlaying gradients of multiple factors like temperature, tree density and/or tree height can make it difficult to attribute a single cause to the range of reaction norms (climate growth correlations).
3. Lastly, the third article attempts to disentangle the effect of age and size on climate-growth correlations. Multiple past studies found that trees of different Ages responded differently to climatic drivers. In contrast, other studies found that trees do not age like many other organisms. Age and size of a trees are roughly correlated, though there are large differences in the growth rate of trees, which can lead to smaller trees that are older than taller trees. Consequently, age is an imperfect Proxy for size and in contrast to age, size has been shown to affect wood anatomy and thus tree physiology. The article compares two tree-age methods and one tree-size method based on cumulative ring width. In line with previous research on aging and Wood anatomy, tree size appeared to be the best predictor to explain ontogenetic changes in white spruce’ climate sensitivity. In particular, tallest trees exhibited strongest correlations with water stress in previous year July. In conclusion, this thesis is about factors that can alter climate-growth relationships (reaction norms) of white spruce. The results emphasize that interactions between climate variables and other factors like tree size or competition status are important for estimates of future tree growth and potential treeline shifts. In line with previous studies on white spruce in Alaska, the results of this thesis underline the importance of water stress for white spruce.
Individuals that are taller and that have more competitors for water appear to be most susceptible to the potentially drier future climate in Alaska. While tree ring based growth trends estimates of white spruce are difficult to derive due to multiple overlaying low frequency (>10 years) signals, all investigated treeline sites showed highest growth at the treeline edge. This could indicate expanding range edges. However, a potential bottleneck for treeline advances and retreats could be seedling establishment, which should be explored in more detail in the future.
Forest ecosystems around the world and especially boreal forests, are facing
drastically changing climatic conditions. It is known that these changes could
challenge their functionality and vitality. Still, the exact impact is not fully
understood, as tree growth is a complex process and depends on countless
environmental and genetic factors. To estimate the effects of climate change
on tree growth and forest development precisely, we must learn more about
tree growth itself. A comprehensive approach is needed where trees and
forests are investigated on different scales and levels of detail, ranging from
global studies to studies on single individuals.
In this dissertation, I follow such a comprehensive approach, using the
North American conifer white spruce as an example. I present three papers
in the form of three chapters in which my co-authors and I studied the
growth and anatomy of white spruce (Picea glauca [Moench] Voss) and how
it is influenced by environmental, climatic, and genetic factors.
We used diverse approaches and methods on different spatial scales, ranging from
investigations on the landscape to the local scale. We established three paired
plots with forest and treeline sites (two cold-limited and one drought-limited).
as well as one additional forest site. In the first chapter, we concentrated
on the genetic diversity of white spruce within and between populations at
all study sites throughout Alaska. The genetic investigations were combined
with analyses on the individual growth response of trees to climatic conditions
to find whether genetic similarities or spatial proximity caused similarities
in growth and climatic sensitivity. In the second chapter, we studied the
direct and indirect effects of environmental conditions on the xylem tissue
of white spruce. We analyzed the impact of precipitation, temperature, and
tree height on four xylem anatomical traits in trees growing at the three
treelines. The investigated traits represented the main functions of xylem
tissue (i.e., water transport and structural support). In the third chapter,
we investigated similar xylem anatomical traits at one cold-limited treeline.
We compared xylem anatomy and annual increment between genetic groups
and individuals and between spatial groups to investigate whether spatial or
genetic grouping influenced the anatomy and growth of white spruce.
We found an overall high gene flow and high genetic diversity in white
spruce. However, the sensitivity of the growth and anatomical traits of white
spruce was driven mainly by spatial rather than genetic effects and differed
between study sites. Trees from the drought-limited site were more sensitive
towards precipitation and a moisture index, while trees from the cold-limited
sites were more sensitive towards temperature. A strong direct effect of tem-
perature was primarily found in latewood traits related to the structural sup-
port of the tree. Earlywood traits related to water transport, however, were
influenced mainly by tree height. Tree height itself was potentially affected
by diverse abiotic and biotic factors (e.g., (micro)climate, soil conditions,
and competition). Thus, traits related to water transport were indirectly
influenced by environmental conditions. Genetic effects in xylem anatomical
traits were found in the earlywood hydraulic diameter and latewood den-
sity, whereas in general, primarily spatial rather than genetic grouping was
influencing the anatomy of white spruce.
Overall, white spruce showed to be a genetically diverse species with a
high gene flow. The effects of spatial proximity and spatial grouping on the
sensitivity and anatomy of white spruce indicate high phenotypic plastic-
ity. This high phenotypic plasticity combined with the vast genetic diversity
translates into an immense potential for the species to adjust (phenotypically)
and possibly adapt (genetically) to changing conditions. Thus, in terms of
climate change, white spruce may be a rather persistent species that manages
to cope with the drastic changes. Though additional work might be needed to
draw a more solid conclusion, the presented work shows how a comprehensive
study approach can help to interpret and understand the growth and ecology
of a tree species. It may be an inspiration for future studies to broaden their
approaches and to use comprehensive methods on different levels of detail to
not only observe trees but to explore and understand them.