Refine
Document Type
- Doctoral Thesis (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
Institute
Über 40% der derzeit verwendeten Arzneimittel beinhalten Amine als Wirkstoff. Vor allem die Chiralität dieser Moleküle stellt eine immer größere Bedeutung dar. Chirale Moleküle unterscheiden sich in der räumlichen Anordnung der Atome um das chirale Zentrum. Nicht selten besitzen Naturstoffe ein solches chirales Zentrum und sind asymmetrisch aufgebaut. In diesem Zusammenhang ist es nicht verwunderlich, dass die in der Medizin eingesetzten Wirkstoffe einen unterschiedlichen Wirkungsgrad je nach chiraler Konfiguration aufweisen.
Ziel dieser Arbeit war es neue Methoden zur stereoselektiven Synthese chiraler Amine zu untersuchen. Im Gegensatz zu herkömmlichen chemischen Synthesen, die beispielsweise auf Übergangsmetalle als Katalysatoren setzen, stellen Enzyme als Katalysatoren eine interessente Alternative dar. Stereo-, Regio- und Chemoselektivität ist Enzymen oft von Natur aus gegeben. Im Mittelpunkt der enzymatischen asymmetrischen Synthese optisch aktiver Amine standen bisher Amintransaminasen (ATA), die eine Aminogruppe von einem Amin (Aminodonor) auf ein Keton (Aminoakzeptor) transferieren. Diese Enzyme sind jedoch auf die Synthese primärer Amine beschränkt, sekundäre und tertiäre Amine sind nicht zugänglich. Eine Alternative hierzu stellen Iminreduktasen (IREDs) dar. Dabei handelt es sich um NADPH-abhängige Enzyme, die eine Reduktion von Iminsubstraten zu optisch aktiven Aminen katalysieren. Vor allem die IRED-katalysierte reduktive Aminierung steigerte das Interesse dieser Enzymklasse. In einer reduktiven Aminierung wird nicht das Imin selbst als Substrat eingesetzt, sondern eine prochirales Keton. Dieses formt mit einem Aminsubstrat (Nukleophil) ein Imin und wird anschließend reduziert. Durch diesen Reaktionsweg sind IREDs nicht nur auf zyklische Substrate beschränkt, auch instabile azyklische Imine werden zugänglich.
Die reduktive Aminierung mittels Iminreduktase wurde erstmalig im Jahr 2014 beschrieben und war zu Beginn dieser Arbeit nur als "Proof of Concept" gezeigt worden. Im Rahmen dieser Promotionsarbeit konnte gezeigt werden, dass diese Enzyme die Möglichkeit bieten, optisch aktive Amine mit hohen Umsätzen und Enantiomeren- bzw. Diastereomerenüberschüssen zu synthetisieren.
β-chirale Amine, wie zum Beispiel Pregabalin und Baclofen, sind Verbindungen von großem Interesse insbesondere für die pharmazeutische Industrie. Biokatalytische Herstellungsverfahren, vor allem Aminierungsreaktionen, sind bisher nur geringfügig untersucht worden und werden nach aktuellem Wissenstand bis auf die Synthese von Niraparib noch nicht in großtechnischem Maßstab eingesetzt. Wünschenswert ist die Etablierung einer Synthese, welche (S)-Pregabalin bzw. (R)-Baclofen in hohen Ausbeuten liefert, da diese beiden Enantiomere jeweils die höhere biologische Wirksamkeit aufweisen.
Ziel dieser Arbeit war die Synthese von Pregabalin und Baclofen als Modellverbindungen für β-chirale Amine mit Hilfe einer selektiven Amintransaminase oder Amindehydrogenase.
Zunächst wurde erfolgreich mit Hilfe der Gaschromatographie bzw. HPLC jeweils eine chirale Analytik für die beiden Reaktionsprodukte sowie die Baclofen-Derivate etabliert, die stabil reproduzierbar und auch zur Quantifizierung geeignet war. Auch für 3-(4-Chlorphenyl)-4-oxo-buttersäure-t-butylester konnte eine GC-Methode entwickelt werden, die Aufschluss über die Konzentration und den Enantiomerenüberschuss gab.
Die vier zur Verfügung gestellten Amindehydrogenasen konnten erfolgreich exprimiert und mittels IMAC-Methode gereinigt werden. Trotz geringer Aktivitäten in einem photometrischen NADH-Assay konnte jedoch keine Produktbildung nachgewiesen werden. Eine Kollektion von ca. 150 Amintransaminasen wurde bezüglich der Desaminierung von Pregabalin und Baclofen mittels Dünnschichtchromatographie untersucht. In Richtung der Aminierung wurde ein photometrischer Acetophenon-Assay verwendet. Dabei wurden für Pregabalin sechs und für Baclofen 17 potenzielle Kandidaten ermittelt. Besonders vielversprechend war die Variante 3FCR 59W 87L 231A 382M 429A (3FCR_5M), welche 3-(4-Chlorphenyl)-4-oxo-buttersäure-t-butylester als Substrat akzeptierte. Nach der Ermittlung eines geeigneten Aminodonors und Optimierung der Reaktionsbedingungen konnten Umsätze bis zu 90% bei 99%ee (R) mit IMAC-gereinigter 3FCR_5M erzielt werden.
Um Kosten für ein späteres großtechnisches Verfahren einzusparen, sollte die Reaktion ebenfalls für den Einsatz von Zellextrakt optimiert werden. Dabei wurde beobachtet, dass geringere Enantiomerenüberschüsse erzielt wurden als mit dem gereinigten Enzym und der Substratverbrauch höher als die Produktbildung war. Als mögliche Ursachen wurden der Umsatz des Substrats durch ein E. coli eigenes Enzym, beispielsweise eine Aldehydreduktase oder Aldehyddehydrogenase, sowie eine Beeinflussung der Enantioselektivität durch die veränderte chemische Umgebung oder den selektiven Entzug des gewünschten Substrat-Enantiomers durch eine selektive Nebenreaktion hypothetisiert. Dieses Phänomen konnte durch eine vorgeschaltete Reinigung mittels fraktionierender Ammoniumsulfat-Fällung jedoch erfolgreich umgangen werden. Mit dieser Methode konnten vergleichbar hohe Umsätze und Enantiomerenüberschüsse wie mit dem IMAC-gereinigten Enzym erreicht werden.
Bei ersten Vorversuchen zum Up-Scaling der Reaktion wurde festgestellt, dass eine höhere Substratkonzentration nicht einen proportional höheren Umsatz zur Folge hatte, jedoch konnte der Umsatz durch eine versetzte Zugabe der Enzymlösung gesteigert werden, sodass ein Prozess mit diesem Biokatalysator in seiner aktuellen Form eine kontinuierliche Zugabe erfordern würde. Praktikabel wäre einer Verminderung der Substrat-Inhibierung und Erhöhung der Enzymstabilität durch weiteres Protein-Engineering. Auch zur Produktion von 3FCR_5M im größeren Maßstab wurden Experimente vorgenommen. Dabei konnte gezeigt werden, dass eine vielversprechende Expression im Bioreaktor bei einer kontinuierlichen Temperatur von 30°C und einer Expressionsdauer von sieben Stunden. Nach einigen Optimierungsschritten konnte im Bioreaktor die zwanzigfache volumetrische Aktivität im Vergleich zur Expression im Schüttelkolben erzeugt werden.
Zusammenfassend ist zu sagen, dass in der vorliegenden Arbeit, trotz weiterem Optimierungsbedarf, eine sehr gute Grundlage für die Transaminase-vermittelte Synthese von (R)-Baclofen geschaffen wurde. In zukünftigen Arbeiten sollte die Optimierung der Reaktion in großem Maßstab im Fokus stehen.
The aim of our research is a stereoselective synthesis development of 4-aminocyclohexanol by the application of a keto reductase (KRED) and an amine transaminase (ATA). 4-Aminocyclohexanol is a valuable precursor for active pharmaceutical ingredients, for example, lomibuvir (a HCV protease inhibitor), ambroxol (a secretolytic agent) and other bioactive molecules. Today, the trans-4-aminocyclohexanol is accessed via Ni-catalyzed synthetic procedure giving moderate yields. In our project we perform cis- and trans-4-aminocyclohexanol synthesis from 1,4-cyclohexanedione (a bio-based precursor) by an one-pot approach combining sequentially a KRED and an ATA as catalysts. For this, we envisaged two multistep enzymatic procedures. The route A would involve 4-hydroxycyclohexanone formation from 1,4-cyclohexanedione via a KRED-catalyzed monoreduction and a further transamination mediated by an ATA towards 4-aminocyclohexanol. The route B would consist of switching the steps of the previous sequential approach, that is, a monoamination of the diketone to yield 4-aminocyclohexanone, and the subsequent reduction of the remaining carbonyl group. Only route A turned out to be feasible, and we performed 4-aminocyclohexanol synthesis at the preparative scale in the sequential and tandem modes. Depending on the ATA, both isomers can be obtained.
The synthesis of several bioactive compounds and active pharmaceutical ingredients relies on the development of general and efficient methods to prepare optically pure amines. Transaminases are industrially relevant enzymes and are useful for synthesizing a large number of compounds that contain a chiral amine functionality. Although the immense potential associated to the use of these biocatalysts, the equilibrium position is often unfavorable for amine synthesis. The use of an excess of amine donor, compared to the ketone substrate, combined with selective removal of the formed product, can help in overcoming this limitation. This work mainly focused on broadening the application of membrane-based in situ product recovery (ISPR) techniques for the transaminase-catalyzed synthesis of chiral amines. The
overall work was designed around the implementation of amine donors, possessing considerably larger molecular ‘size’ compared to commonly used amine donors. To clearly
distinguish these molecules from traditional donor amines, we designate them as High Molecular Weigh amine donors. With a molecular weight between 400 and 1500 g/mol, in contrast to traditional donor amines, HMW amine donors enable a size-based separation between amine donor and amine product molecules. HMW amines, provided in excess for thermodynamic equilibrium shifting can thus be simply retained by a size-exclusion mechanism by commercial membranes, while the smaller product amines are permeated. Therefore, a selective recovery of the desired chiral amine product is possible. The implementation of ISPR techniques using HMW amine donors can theoretically lead to (i) equilibrium shifting, (ii) alleviation of product inhibition, and (iii) a highly pure product stream.
The feasibility of using HMW amine donors in aqueous, organic solvent and solvent-free media for the transaminase-catalyzed synthesis of 1-methyl-3-phenylpropylamine (MPPA) was proven in this thesis. The latter two approaches were investigated with the aim to achieve higher product concentrations. Along with that, we demonstrated two membrane-assisted ISPR proof of concepts. Specifically, nanofiltration was coupled with the enzymatic reaction performed in aqueous media (Article I), while liquid-liquid (L-L) extraction in a contactor was applied for transamination in organic solvent media (Article II). As an alternative to membrane-based strategies we also designed a spinning reactor concept for the integrated chiral amine synthesis (in organic solvent) and recovery (Article III).