Refine
Document Type
- Doctoral Thesis (11)
Has Fulltext
- yes (11)
Is part of the Bibliography
- no (11)
Keywords
- Metabolomics (3)
- Atmosphärendruckplasma (2)
- Antibiotikaresistenz (1)
- Antimicrobial (1)
- Antimicrobial Resistance (1)
- Biochemie (1)
- Chemical Ecology (1)
- Chlorella vulgaris (1)
- Cold atmospheric plasma (1)
- Eicosanoide (1)
Institute
Analyse der metabolischen Anpassung von Streptococcus pneumoniae an antimikrobielle Umwelteinflüsse
(2019)
Das Gram-positive Bakterium Streptococcus pneumoniae ist ein humanspezifisches Pathogen des oberen Respirationstraktes. Der opportunistische Krankheitserreger kann jedoch mehrere Organe befallen und tiefer in den Körper vordringen, was zu lokalen Entzündungen wie Sinusitis und Otitis media oder zu lebensbedrohlichen Infektionen wie Pneumonie, Meningitis oder Sepsis führen kann. Für das Bakterium S. pneumoniae wurden bisher kaum Metabolom-Daten erhoben. Daher war das Ziel dieser Dissertation eine umfassende Charakterisierung des Metaboloms von S. pneumoniae. In dieser Dissertation wurden als analytische Methoden die Gaschromatografie (GC) und Flüssigkeitschromatografie (LC) jeweils gekoppelt mit Massenspektrometrie (MS) sowie die Kernspinresonanzspektroskopie (NMR) verwendet, um die Metaboliten zu analysieren. Es sind mehrere Analysetechniken erforderlich, um den Großteil des Metaboloms mit seinen chemisch verschiedenen Metaboliten zu erfassen. Artikel I fasst die Literatur zu Untersuchungen des Metabolismus von S. pneumoniae in den letzten Jahren zusammen. Um eine Momentaufnahme des biologischen Systems zum jeweiligen Zeitpunkt zu erhalten, ist neben dem reproduzierbaren Wachstum während der Kultivierung auch die exakte Probenahme zu beachten. Aus diesem Grund wurde in dieser Dissertation ein Probenahmeprotokoll für das Endometabolom von S. pneumoniae etabliert (Artikel II). Mithilfe des optimierten Protokolls wurde eine umfassende Metabolomanalyse in einem chemisch definierten Medium durchgeführt (Artikel II). Um S. pneumoniae in einer Umgebung ähnlich der im Wirt zu untersuchen, wurde in einem modifizierten Zellkulturmedium kultiviert. Intermediate zentraler Stoffwechselwege von S. pneumoniae wurden analysiert. Das intrazelluläre Stoffwechselprofil wies auf einen hohen glykolytischen Flux hin und bot Einblicke in den Peptidoglykan-Stoffwechsel. Darüber hinaus widerspiegelten die Ergebnisse die biochemische Abhängigkeit von S. pneumoniae von aus dem Wirt stammenden Nährstoffen. Ein umfassendes Verständnis der Stoffwechselwege von Pathogenen ist wichtig, um Erkenntnisse über die Anpassungsstrategien während einer Infektion zu gewinnen und so neue Angriffspunkte für Wirkstoffe zu identifizieren.
Die zunehmende Verbreitung von resistenten S. pneumoniae-Stämmen zwingt zur Suche nach neuen antibiotisch wirksamen Substanzen. Im Zuge dessen wurde in Artikel III die metabolische Reaktion von S. pneumoniae während des Wachstums unter dem Einfluss antibakterieller Substanzen mit dem Ziel der Identifizierung metabolischer Anpassungsprozesse untersucht. Dabei wurden Antibiotika mit unterschiedlichen Wirkmechanismen verwendet, wie die Beeinflussung der Zellwandbiosynthese (Cefotaxim, Teixobactin-Arg10), der Proteinbiosynthese (Azithromycin) sowie Nukleotidsynthese (Moxifloxacin). Es konnten keine Wirkmechanismus-spezifischen Marker-Metaboliten identifiziert werden. Jedes Antibiotikum verursachte weitreichende Veränderungen im gesamten Metabolom von S. pneumoniae. Die Nukleotid- und Zellwandsynthese waren am stärksten betroffen. Besonders vielversprechend sind Antibiotika mit zwei Wirkorten wie Teixobactin-Arg10 und Kombinationen aus zwei Antibiotika. In dieser Dissertation wurde das erste Mal das synthetisch hergestellte Teixobactin-Arg10 mittels einer der modernen OMICS-Techniken untersucht. Die vorliegende umfassende Metabolom-Studie bietet wertvolle Erkenntnisse für Forscher, die an der Identifizierung neuer antibakterieller Substanzen arbeiten.
Insgesamt tragen die Ergebnisse der Dissertation zu einem besseren Verständnis der bakteriellen Physiologie bei.
Microalgae are aquatic, unicellular, eukaryotic organisms, which perform photosynthesis. They have gained interest within the last decades not only for biofuel production due to their high amount of lipids, but also for pharmaceutical and for nutraceutical purposes. Interesting compounds are proteins, carbohydrates, or pigments, such as carotenoids. However, microalgae possess strong and rigid cell walls, which hinder a sufficient and yet, gentle extraction of those valuable compounds. Although standard extraction techniques are available, several shortcomings occur, e.g. high energy demand, use of environmentally harmful solvents or alteration of compounds due to heat or chemicals. Therefore, an alternative method is needed, which is able to address these disadvantages. Physical plasmas were thus studied to answer the question whether they are able to disintegrate the cell walls of microalgae effectively and yet, without degradation of the extractives.
First step of the thesis was to find a suitable plasma source that has an effect on the cell walls because plasma effects, such as electric fields, shockwaves, UV light emission, and the generation of reactive species can be tailored with the respective setup. It was found that spark discharges are most effective for the extraction of Chlorella vulgaris, which was chosen as model organism. All extraction yields were compared to reference methods, whereat microwave radiation was found to be the most effective reference method and were hence, applied for comparative studies.
For the next step, proteins were selected as targets to answer the question, which differences can be determined between plasms-treated and microwave-radiated proteins are observable although the extraction yields were equal. Furthermore, plasma effects, especially the effects of reactive species on the extracted proteins had to be studied. Findings indicate that heat sensitive proteins, such as photosystem-related proteins, or histones are better extractable with spark discharges than with microwave exposure and the effect of reactive species is only minor.
The last step was to determine, which plasma effect is responsible for the observed cell wall disintegration. Therefore, the tensile strength of Chlorella vulgaris was determined and compared to the shockwave pressure, which is generated from the spark channel. It was proven that the shockwave pressure exceeds by far the tensile strength of the microalgae an can be thus held responsible for mechanism for cell wall rupture.
In this thesis, it was found that spark discharges are a promising alternative for the extraction of valuable compounds from microalgae. The discharges are not only effective, but also gentle enough for sensitive compounds, such as proteins or pigments.
Using validated analytical tools and optimized sampling procedures, it was possible to detect a vast number of metabolites from the extracellular space but also from the cytosol of B. subtilis. The results indicate that the complement of the analytical methods was suitable in the monitoring of the metabolome since it allowed a great coverage of physicochemical diverse metabolites. However, a wide number of unknown metabolites/features were also detected. Although broad databases exist that can help in the annotation of metabolites, further investigation is needed in their identification. In unpredictable changing conditions, bacterial cells possess appropriate adaptation strategies for a successful bacterial growth. These rely on sensing mechanisms that globally adjust gene expression via transcription and feedback regulations. The metabolic sensing mechanisms have emerged as key roles in the nutritional information and regulation of cell cycle processes. In this work, a new quality of information regarding the metabolism and adaptation to the absence of key signal mechanisms in B. subtilis was provided. Investigations of cells lacking Pyk uncovered alterations in the import of glucose and pyruvate from the nutritional media. These results gives insights to the pyruvate homeostasis mechanism but also brought new questions concerning the regulation of the CCR. Pyruvate wasn't susceptible to the glucose dependent CCR in Δpyk. The earlier in ux of pyruvate in these cells is in accordance to the newly discovered pyruvate transport mechanism. Also, it was speculated that the lower consumption of external glucose could be a consequence of the impairment of the PTS system in the mutant cells due to the accumulation of glycolytic metabolite FBP. In future studies, insights of the PTS system mechanism should be done in these conditions, that could comprise the determination of HPr phosphorylation and the HPrK activity. This study also arose new questions that should be address, that include the higher secretion of acetoin and 2,3-butanediol, and the lower accumulation of shikimate 3-phosphate by the mutant cells. In an untargeted metabolomic analysis, a vast number of altered features were suggested to be fatty acids metabolites, precursors of phospholipids and LTA. Complementary approaches should be done for the confirmation of these metabolites and the inspection of possible alterations in the membrane structure. In the study of LTA mutants, the accumulation of PG precursors provided a hint of altered cell wall assembly. Although by uorescence microscopy no clear changes were detected, the metabolic results emphasized the previous assumption of the affected hydrolytic activity occurring in the PG. For comprehensive knowledge of the cell wall it would be important to detect and identify more metabolites of the LTA anchor using optimized cromatographic method. These results could be complemented with other omics data sets studies which would help in the elucidation of these key regulatory systems mechanisms.
In acinar cells, cellular organelles like zymogene granule, mitochondria, endoplasmic reticulum and lysosome functions in coordinate way in order to synthesize and secrets large amounts of digestive enzyme. Dysfunction of this organelle, results into enzyme activation within acinar cell; ultimately, acute pancreatitis. While previous studies reported that mitochondrial function is disrupt but mechanism of clearance of these mitochondria remains unknown during pancreatitis. Here we reported that PINK1 and Parkin mediated pathway is activated during pancreatitis and clears dysfunctional mitochondria in-vivo. PINK1 or Parkin deficient acinar cell had energy crisis, decreased ATP production and altered acinar cell fate in-vitro. Inhibiting clearance of dysfunctional mitochondria aggravates experimental pancreatitis severity and delays regeneration/recovery of exocrine tissue after disease via PARIS-PGC-1α pathway. While an attempt to explore therapeutic target of PARIS-PGC-1α pathway by treatment of SRT1720 rescued experimental pancreatitis. Together, PINK1 and Parkin, restricts exocrine pancreatic damage in pancreatitis and accelerates tissue recovery after disease.
The discovery of antibiotics around one century ago was a milestone for medicine. However, despite the warning of Alexander Fleming in 1945, antibiotics were used poorly, resulting in many antibiotic-resistant pathogens. Patients infected with resistant pathogens need to get treated with additional antibiotics or, as a last resort, trust completely on their immune system. This causes 700,000 deaths per year. Most clinically used antibiotics have been derived from soil microorganisms, while other niches stayed unexplored. Exploring new niches inhabiting antibiotic-producing microorganisms may result in novel antibiotics. Furthermore, expanding the search from frequently investigated soluble metabolites to volatiles may open up numerous compounds as potential future antibiotics. This thesis is about the search for antimicrobial volatiles produced (among others) by microorganisms from social spider ecosystems, a niche that was little explored until now.
Volatiles are characterized by their high vapor pressure at ambient temperatures, allowing them to distribute fast in both the gas and water phase. They can spread quickly even in complex ecosystems using the air and potentially fulfill functions like communication and antimicrobial defense. Especially, volatiles with antimicrobial activities caught the attention of many scientists because of their potential role in pathogen defense, as we have reviewed (Article I). Volatiles are usually produced in the primary metabolism and belong to diverse chemical classes, like hydrocarbons, aromates, alcohols, aldehydes, acids, esters, amides, and thiols. Their antimicrobial spectrum ranges from antifungal, to antibacterial, anti-oomycete, and even broad-spectrum activity. Volatiles are ubiquitously produced. Especially Bacillus and Streptomyces species are often reported to produce antimicrobial volatiles. Knowledge about antimicrobial volatiles – for example, details about their modes of action – is lacking yet, but these compounds may help to overcome the antimicrobial resistance crisis in the future. Volatiles could be used in medicine and agriculture, either alone or in combination with traditional antibiotics, opening new strategies against antimicrobial resistance.
A promising source of (volatile) antimicrobials is the ecosystem of social arthropods. Due to their lifestyle in dense colonies, they likely spread pathogens between individuals, making antimicrobial defense crucial. Since the presence of antimicrobial volatiles was reported in social insect ecosystems, we investigated the unexplored volatilome of the Namibian social spider Stegodyphus dumicola (Articles II and III). In the first study, we analyzed the in situ volatilomes of the spiders’ nest, web, and bodies using GC/Q-TOF and revealed that more than 40 % of the tentatively identified volatiles were already known for their antimicrobial activities (Article II). We proved the antimicrobial activity of five pure compounds found in the samples, among others against the suggested spider pathogen Bacillus thuringiensis. These results indicate the potential role of antimicrobial volatiles for pathogen defense and could ultimately help explain the spiders’ ecological success.
Volatiles from the spider volatilome can originate from various sources, including microorganisms, surrounding plants, the spiders themselves, the spiders’ prey, so we analyzed the volatilomes of microbial nest members in a second study. The microbial nest members we selected for this were the bacteria Massilia sp. IC2-278, Massilia sp. IC2-477, Sphingomonas sp. IC-11, and Streptomyces sp. IC-207, and the fungus Aureobasidium sp. CE_32 (Article III). Several volatilomes showed antibacterial and/or antifungal activities against two suggested spider pathogens. The subsequent volatilome analyses using GC/Q-TOF revealed the presence of many volatiles that have already been described as antimicrobials. Five pure volatiles were tested against two suggested spider pathogens, revealing all volatiles as antibacterial, antifungal, or both. These results support the potential role of antimicrobial volatiles in social spider pathogen defense and indicate microbial nest members as the origin of (novel) antimicrobial volatiles.
Together, the articles that constitute this thesis highlight the antimicrobial power of volatiles (Article I), indicates the volatilome of the ecosystem of S. dumicola as a potential pathogen defense (Article II), and finally reveal the spider nest microbiome as a source for antimicrobial volatiles (Article III). This knowledge not only adds to the understanding of social spider ecosystems (and likely other social arthropod ecosystems) but also has the potential to open a novel source for antimicrobial compounds that may help to counter the antimicrobial resistance crisis.
The relevance of cold atmospheric plasmas (CAPs) in biomedicine has recently grown. The potential of CAPs has been discussed in multiple scientific works, highlighting its effectiveness in promoting wound healing, limiting cancer progression, and for sterilization of surfaces. Main bioactive molecules, such as reactive oxygen and nitrogen species (RONS), are proposed as key candidates in these processes. Indeed, the generation of cold plasma induces noble gas ionization which, reacting with atmospheric air molecules, generates species such as singlet oxygen, atomic oxygen radicals, nitric oxide radicals. Although molecular simulations have been conducted, the mechanism of action on biological molecules, as well as the possibility to tune plasmas to produce specific species cocktails (e.g., with different degree of oxidation power) has been not fully unleashed. In this dissertation, presented in form of 5 published scientific articles, focus has been placed on the interaction of plasmas with peptides and proteins, which are main biological effectors in cellular compartments. Precisely, through the development of liquid chromatography coupled mass spectrometry (LC-MS) methods, the effects of plasmas on peptides and proteins in form of oxidative post-translational modifications (oxPTMs) has been investigated. The characterization of these oxPTMs has been performed by treating peptide or protein aqueous solutions and on porcine skin tissues. It has been found that, introducing small amounts of different gases (oxygen, nitrogen, or both) or even water molecules, can made CAPs tunable tools to produce oxygen-species dominating effects versus nitrogen-species dominating effects. In addition to this, it was found that the amino acid position in a peptide or protein influences the quality and quantity of the resulting oxPTMs. Besides this, other important parameters like driven gases, admixture gases or treatment duration were identified as relevant factors for the modification of amino acids in the peptide structure. By comparing the effects between peptide solutions and complex matrices such as porcine skin, water has been identified as a valid vehicle to transport and amplify the plasma chemistry. In an experimental study, the inactivation of a protein (PLA2) was observed after CAP treatment and together with simulation studies, the specific dioxidation of tryptophane W128 was detected as a potential explanation for this inactivation, indicating the strong impact of plasma on biological targets. In summary, oxidative modifications found in peptide solutions were observed also in complex protein structures and sample matrices. In conclusion, this work provides a starting point for future studies of oxidative modifications in complex models and may thus be helpful for further investigations in the fields of plasma medicine and redox chemistry.
Immunogenität von Hautkrebszellen und dem Modellprotein Ovalbumin nach einer Kaltplasma-Behandlung
(2021)
Eine Behandlung von Tumoren mit physikalischem Kaltplasma zeigt eine erhöhte Toxizität und ein reduziertes Tumorwachstum. Zeitgleich werden während einer Behandlung mit Plasma eine Vielzahl an reaktiven Sauerstoff- und Stickstoffspezies (RONS) generiert, welche Immunzellen stimulieren können. Viele neue Therapieansätze bestreben nicht nur eine Tumortoxizität, sondern auch eine Förderung der körpereigenen, da diese häufig durch Mechanismen der Tumorzellen unterdrückt wird. Zu solchen Therapien zählen checkpoint inhibitoren, Vakzinierungen oder ein adaptiver Zelltransfer mit transgenen oder vor-stimulierten Zellen. Die dadurch geförderte Antitumor-Immunantwort basiert grundlegend auf einem mehrphasigen Prozess. Dieser beginnt mit einer Antigen-unspezifischen frühen Phase, in der das innate Immunsystem aktiviert wird und zu einer Vermehrung und Differenzierung von Antigen-spezifischen CD4+ und CD8+ T-Zellen führt. Da während einer Entzündungsreaktion viele RONS gebildet werden, um Fremdkörper zu eliminieren und Immunzellen zu rekrutieren, ist eine Therapie mit RONS naheliegend. Durch die Anwendung von Kaltplasma können die gebildeten RONS zum Entzündungsgeschehen beitragen und Zellen des innaten und adaptiven Immunsystems stimulieren. Eine veränderte Immunogenität von Tumorzellen sowie eine daraus resultierende direkte Aktivierung von Immunzellen im Kontext einer Antitumor-Immunantwort wurden nach einer Behandlung mit Jet-Plasmen bislang nicht untersucht.
In der vorliegenden Arbeit wurde die Kaltplasma-Behandlung von Hautkrebszellen und eines Modellantigens unter Berücksichtigung einer Antitumor-Immunantwort durch natürliche Killerzellen des innaten Immunsystems sowie adaptive Immunzellen in vitro und in vivo untersucht. Es konnte gezeigt werden, dass eine Behandlung mit Kaltplasma zu einer erhöhten Tumortoxizität führt und das Repertoire der Oberflächenmoleküle auf Tumorzellen verändert. In vivo wurde eine vermehrte Infiltration von Immunzellen in das Tumormikromilieu beobachtet, welche mit einer erhöhten Aktivierung von Lymphozyten und Konzentrationen immunstimulatorischer Zytokine einherging. Durch die zeitgleich reduzierten Tumorgrößen, ist eine durch Immunzellen vermittelte Tumortoxizität als Erklärung naheliegend. In zwei Vakzinierungsstudien konnte die Immunogenität von Plasma-behandelter Tumorzellen und einem Tumorassoziierten Modellantigen bestätigt werden.
On the aqueous phase chemistry of atmospheric-pressure plasma jets for biomedical applications
(2021)
Cold atmospheric-pressure plasmas are candidate biomedical tools proposed for various applications, such as biological decontamination, cancer regression, and promotion of wound healing. Plasmas, which are in the fourth state of matter, can be generated using inert gases (e.g., argon, helium, ambient air) and different source concepts. Together with the applied parameters, the source design defines the chemical-physical characteristics of the resulting plasma, leading in turn to variable biochemical effects on biological matter. The medical effectiveness of cold plasmas has been proven in vitro and in vivo, also in clinical trials for wound healing in patients using two certified plasmas sources, the kINPen MED and the PlasmaDerm. However, molecular mechanisms leading to those effects are unclear. In the same way, it must be studied if the modulation of plasma properties could improve the specificity of biological effects. These findings are needed to define the concept of plasma dose to be optimized in targeting peculiar pathologic conditions. The present thesis consisting of five peer-reviewed publications has investigated these aspects of plasma research.
In the gaseous phase of cold plasmas, various components with biological activity are produced, such as radiation (e.g., vacuum UV, UV) and reactive species (e.g., •O, 1O2, •OH, •NO, •NO2, O3). As most gaseous species are short-lived, liquid compartments surrounding cells and molecular structures could mediate their transformation and/or the production of other aqueous species. For this reason, plasma-induced aqueous chemistry has been mainly investigated in this thesis. The reaction pathways of reactive oxygen and nitrogen species in liquid were analyzed by monitoring the oxidative modifications induced on tyrosine and cysteine, which are biological structures essential in cellular protein functioning. Liquid chromatography and mass spectrometry-based strategies have been elaborated to elucidate structural changes and characterize the oxidative pattern occurring on the tracers after treatment with plasmas.
As a first result, it could be shown that the oxidative pattern induced on tyrosine or cysteine variated qualitatively and quantitatively with the applied conditions, reflecting the action of differently produced/deposited species in liquid. Biologically relevant structures were identified and in part quantified (e.g., cystine, sulfonic acid, sulfinic acid, S-sulfonate, S-nitrosocysteine, nitrotyrosine, nitrosotyrosine). By using isotopically labeled oxygen or nitrogen in the gas plasma, or labeled oxygen in the target liquid, the incorporation of gaseous or aqueous species in the tracer’s structures was monitored via mass spectrometry. With this strategy, the reaction mechanisms involving gaseous oxygen and nitrogen species at the liquid interface were clarified, as well as the de novo production of reactive species in liquid. Short-lived gaseous oxygen species such as atomic and singlet oxygen (•O, 1O2), predominantly formed in conditions with oxygen in the plasma gas, were able to modify the cysteine structures in highly oxidized derivatives, such as cysteine sulfonic acid. Due to their half-life, however, their activity occurred mainly at the interface. Vacuum UV radiation and •O also led to the formation in liquid of hydroxyl radicals (•OH) and hydrogen peroxide (H2O2), due to water photolysis and homolysis. Water-derived species were responsible for the formation of reversible modifications, such as cysteine S-sulfonate, cystine, and cystine sulfoxides. Nitrosative modifications (e.g., S-nitrosocysteine, nitrosotyrosine, nitrotyrosine) could be observed only in conditions with both nitrogen and oxygen in the plasma gas, and further optimization occurred in presence of water molecules in the gas. In this case, the formation and action of peroxynitrite (ONOO-) in generating nitrotyrosine was proven by using a scavenger molecule for ONOO-.
Finally, the cysteine product pattern was applied as a tool to characterize and compare the overall chemistry generated in liquid by different plasma sources and applied parameters. These findings aim to support and contribute to the definition of plasma dose for plasma medicine, through the standardization, control, tuning, and optimization of plasma parameters and plasma liquid chemistry. These results may be applied in the future to improve the specificity and selectivity of the biological effects generated by the described atmospheric-pressure plasma jets.
Analysis of bioactive lipids from different infection models during bacterial and viral infections
(2021)
Bioactive lipids or lipid mediators influence numerous processes like the reproduction, the bone turnover, the pain perception, the cardiovascular function and the immune system. Eicosanoids and oxylipins are parts of the immunomodulatory lipid mediators, which can be synthesized from polyunsaturated fatty acids (PUFAs) by enzymatic and non-enzymatic reactions. Typical members of eicosanoids are prostaglandins and leukotrienes. The properties of bioactive lipids include the activation of inflammatory reactions as well as the support of resolution. Like hormones, they act locally restricted and in low concentrations. Further bioactive lipids exist i.e. intermediates of the sphingolipid class. The biosynthesis of some of these compounds like the prostaglandins can be influenced by different drugs whereas for other groups of lipid selective inhibitors are still missing. Their impact on inflammatory processes and against chronic diseases has already been analyzed, while studies in context with infection are largely limited. Infection of the upper respiratory tract caused by viral and bacterial pathogens constitute a huge burden for the human healthcare. The main pathogens are the Influenza A virus (IAV), Staphylococcus aureus (S. aureus), Streptococcus pneumoniae (S. pneumoniae) and Streptococcus pyogenes (S. pyogenes). Besides mono-infection with one of these pathogens, frequently occurring bacto-viral co-infections exist, which negatively influence the etiopathology. The main task of the immune system is the detection and the elimination of pathogens, which can essentially be affected by lipid mediators. Their instability due to oxidizability, the existence of regioisomers and the low abundance of eicosanoids and other oxylipins are the main problems for their analytical measurement.
The mayor objective of this dissertation was the establishment of a suitable analytical method for selected lipid mediators and the detection of infection-related changes. The separation and detection was performed by using high-performance liquid chromatography (HPLC) coupled with triple quad mass spectrometry. This combination is called tandem mass spectrometry (MS/MS). The MS parameters were optimized for approximately 30 lipid mediators by use of chemical standards and the detection was achieved by dynamic multiple reaction monitoring (MRM). Furthermore, the spatial resolution of selected sphingolipids was analyzed in tissue samples using matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MS-Imaging). Concerning the HPLC-MS/MS detection, an MS method was established and optimized with standard compounds. Another crucial part of the establishment was the extraction of bioactive lipids from the different sampling materials. Whereas well tested protocols exist for the extraction and detection of lipid mediators, such protocols for MALDI-MS-Imaging are still limited due to the novelty of this measurement. Ultimately, robust and reproducible protocols for both techniques that were used for the analysis of a broad array of samples from infection experiments were established for both techniques. The analyses of infected cell culture, mice and pigs revealed infection-related perturbations of host lipid mediator levels. Depending on the scientific issue, the sample types cell pellets, lungs, spleens, livers, blood plasmas, pawns including bones or bronchoalveolar lavages were analyzed. For MALDI-MS-Imaging, the spatial distribution of sphingolipids in lung and spleen was detected.
The present dissertation includes four coherent research scopes, in which the pathogen impact on host-derived lipid mediators was detected with the above mentioned analytical methods. The infection models epithelial cells (article II), mouse (article III and IV) and pig (article I) – the latter as the most human like model - showed different aspects of the host-pathogen interaction. The analysis of samples from IAV infection for all three hosts revealed a couple of similarities for some oxylipins that were also described in human infections. Additionally, cell culture and mouse samples from mono-infections as well as co-infections with the pathogens S. aureus and S. pneumoniae were measured. In particular for the bacterial mono- and co-infections, these are the first published results with aspects of infection related changes of lipid mediators. The additional spatial resolution of the sphingolipid intermediates sphingosine 1-phosphate and ceramide 1-phosphate revealed important new insights into their tissue distribution and changes during co-infection.
Article I describes the IAV-specific oxylipin changes in the pig (german landrace) as infection model. Therefore, the sample types lung, spleen, blood plasma, and bronchoalveolar lavage from infected animals at different time points after infection were analyzed and compared with samples from uninfected pigs. Mainly in the lung and the spleen, increased amounts of certain lipid mediators were observed. These changes coincide well with already described alterations in humans and mice. Furthermore, the analysis of different sample material provided an overview about appropriate sample types. Surprisingly, many perturbations were detected in the spleen, which itself was uninfected. Based on the local reaction of lipid mediators, most studies concentrate on sample material with close contact to side of infection. Therefore, this dissertation reveals new insights into a form of systemic immune response. Besides the use of animals with a complex immune system for infection experiments, human bronchial epithelial cells (16HBE) were mono- and co-infected with the pathogens S. aureus, S. pneumoniae and IAV as described in article II. Such cells are the initial barrier for and first contact site with pathogens and thus the comprehension of this host-pathogen interaction is of essential importance. Most changes were detected during pneumococcal infection. Furthermore, the analyzed infections with bacterial pathogens differed from IAV infection by an increased synthesis of 5-hydroxyeicosatetraenoic acid (HETE). For further infections with the above mentioned pathogens, the mouse was used as an infection model. Besides infections affecting the respiratory tract, also the impact of an S. pyogenes infection in different mice strains was analyzed and described in article III. Infection-related changes in prostaglandins, which are involved in bone turnover in swollen pawns as well as enhanced amounts of sepsis- and arthritis-associated lipid mediators were detected, in case arthritis had been induced prior to infection. Furthermore, increased amounts of 20-HETE could be observed for such severe infections. An enhanced biosynthesis of 20-HETE was further confirmed in a high-pathogenic S. aureus LUG2012 infection in article IV for all examined sample types. In this last article of this dissertation, bacterial and viral infections in mice were analyzed similar to those described in article II. Mainly IAV-specific lipid mediator alterations were detected, which are in accordance with the findings of the infected pigs. The additional MALDI-MS-Imaging measurements revealed so far unknown accumulation of ceramide 1-phosphate in lung and spleen as well as enrichment in the red pulp of the spleen.
In summary, this dissertation provides substantial lipid mediator profiles for infections in three different model systems with selected bacterial and viral pathogens. The obtained data constitute a suitable basis for continuative research projects, in which the influence of single bioactive lipids on the course of infection could be examined in more detail.
Die akute Pankreatitis ist eine der häufigsten nicht malignen gastrointestinalen Erkrankungen, die zu Krankenhausaufenthalten führt. Sie ist als Selbstverdau des Pankreas durch seine eigenen Proteasen wie z.B. Trypsin, Elastase und Chymotrypsin definiert. Als Ursprung der Erkrankung wird die frühzeitige intrazelluläre Aktivierung dieser Verdauungsenzyme angesehen. Dies führt zum Zelltod der Azinuszellen und zur Schädigung des Gewebes.
Während der akuten Pankreatitis kommt es in 20% der Fälle zu einem schweren Verlauf der Erkrankung, der mit Organversagen in der Lunge und den Nieren assoziiert ist. Es ist bekannt, dass es zu einer Entzündungsreaktion kommt, bei der große Mengen an Zytokinen ausgeschüttet werden. Leukozyten infiltrieren das Pankreas und verstärken den Gewebeschaden. Es kommt zur Freisetzung von DAMPs, die das angeborene und adaptive Immunsystem aktivieren. Bislang ist nicht gut untersucht, wie das Immunsystem den schweren Verlauf der akuten Pankreatitis beeinflusst und es gibt wenig Theorien über den Organschaden in der Lunge und den Nieren.
In dieser Arbeit lag der Fokus auf dem Organschaden in Lunge und Niere und die Wirkung von Interleukin 33 (IL33) auf die Zellen des angeborenen Immunsystems und deren Einwanderung in verschiedene Organe während der schweren akuten Pankreatitis im Mausmodell. Die schwere akute Pankreatitis wurde mittels Gangligatur und einmaliger Gabe von Caerulein an Tag 2 nach Gangligatur induziert. An Tag 3 nach Induktion wurden die Mäuse getötet und die Organe wurden für weitere Analysen entnommen.
Am dritten Tag nach Induktion der Pankreatitis kam es zu einem Organschaden in der Lunge und den Nieren. In der Lunge fand sich eine Verdickung der Alveolarsepten und eine Verdichtung des Gewebes sowie eine Infiltration von Leukozyten und ein Ödem. In der Niere waren ebenfalls strukturelle Veränderungen zu finden und eine Infiltration von Leukozyten war zu beobachten. In durchflusszytometrischen Analysen der Lunge konnte beobachtet werden, dass CD11b+CD62L+ Monozyten während der akuten Pankreatitis signifikant anstiegen. Mittels RT-DC wurde gezeigt, dass diese Monozyten an Tag 3 signifikant an Größe zugenommen hatten. Mit einer CD11b Färbungen von Lungen und Nieren konnte die Infiltration durch Monozyten bestätigt werden. Unter einer Blockade von Monozyten durch systemische Gabe von anti-CCR2-Antikörpern verringerte sich die Schädigung in Lunge und Niere während der Pankreatitis signifikant.
Diese Daten legen nahe, dass der Organschaden in der schweren akuten Pankreatitis durch infiltrierende Monozyten verursacht wird, die über CD62L (L-Selektin) an die Gefäßwände binden und über ihre Größe Gefäße verstopfen, was in den Kapillaren zur Ischämie führt.
In vitro sezernierten Makrophagen, die mit CCK stimulierten Azinuszellen co-inkubiert wurden, IL33. Im Mausmodell wurde IL33 mittels sST2 blockiert, was die Schädigung des Pankreas in der Pankreatitis reduzierte. In IL33-depletierten Tieren fand sich im Vergleich zum Wildtyp ein geringerer Lungenschaden aber eine unveränderte Nierenschädigung. Somit scheint IL33 eine Rolle bei der Monozyten-vermittelten Organschädigung in der Pankreatitis zu spielen, die sich auf Grund von kompensatorischen Regulationsmechanismen im globalen IL33 Knock-out weniger gut belegen lässt als nach IL33 Inhibition. Die Hemmung von IL33 zur Behandlung der akuten Pankreatitis stellt somit ein vielversprechendes Therapieprinzip dar.