Refine
Document Type
- Doctoral Thesis (7)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
- Podozyt (3)
- Mechanische Dehnung (2)
- Niere (2)
- Podocyte (2)
- Zebrabärbling (2)
- Angiotensin II Typ 2 Rezeptor (1)
- Arzneimittel (1)
- Claudin-5 (1)
- Dach1 (1)
- Differenzierung (1)
Institute
Bei der Untersuchung verschiedener chronischer Nierenerkrankungen in den letzten Jahrzehnten zeigte sich, dass Podozyten als Bestandteil der glomerulären Filtrationsbarriere häufig in die Pathomechanismen involviert sind, wobei ein Verlust ihrer besonderen Architektur aus interdigitierenden Fußfortsätzen (effacement) und auch die Ablösung einzelner Podozyten von der glomerulären Basalmembran beobachtet werden können. Da es sich um postmitotische Zellen handelt, kann ein Verlust nur durch eine Hypertrophie verbleibender Zellen ausgeglichen werden. Nach wie vor ist nicht eindeutig geklärt, ob ein Ersatz stattfindet und wenn ja, welche Zellen dafür verantwortlich sind. Seit einigen Jahren sind die PECs in den Fokus der Aufmerksamkeit gerückt und es konnte gezeigt werden, dass sie sich unter bestimmten Bedingungen zu Podozyten-ähnlichen Zellen differenzieren, aber auch einen negativen Einfluss im vorgeschädigten Glomerulum durch ein profibrotisches Potential ausüben können.
In dieser Arbeit wurden drei Transkriptionsfaktoren (Dach1, MafB und Foxc2) in PECs transfiziert. Für alle drei konnte in der Vergangenheit eine Bedeutung in der Nieren-bzw. Podozytenentwicklung gezeigt werden. Es sollte untersucht werden, ob einer der drei Transkriptionsfaktoren eine Differenzierung der PECs zu Podozyten in vitro induzieren könnte. Auch der Einfluss der jeweiligen Faktoren untereinander wurde untersucht. Dabei zeigte sich, dass die Transfektion mit pMafB-tGFP einen signifikanten Dach1-Anstieg in PECs bedingte. Hinsichtlich der Expression von F Aktin, α-Tubulin und dem Podozyten-spezifischen Transkriptionsfaktor WT-1 in PECs zeigte sich bildmorphologisch kein Hinweis für einen möglichen Einfluss von Dach1, MafB und Foxc2 in PECs. Allerdings konnte durch die Überexpression von Dach1 in PECs ein signifikanter Anstieg des Podozyten-spezifischen Proteins Synaptopodin beobachtet werden. Des Weiteren kam es zu einer Herunterregulation von Pax-2, was insofern bedeutsam ist, als dass auch Podozyten eine verminderte Pax-2-Expression aufweisen. Es zeigte sich außerdem eine verminderte Expression von Caveolin-1 und β-Catenin. Während Ersteres eher als ein Zeichen des profibrotischen und somit negativen Potentials gewertet werden könnte, ähnelt die Herunterregulation von β-Catenin wiederum dem Status von Podozyten.
Zusammenfassend bestätigt die Arbeit das Differenzierungspotential von PECs zu Podozyten und zeigt, dass Dach1 in vitro ein entscheidender Faktor dafür ist.
Fokus der vorliegenden Arbeit war es, die Regulation des Aldosterons durch kaliumreiche Diät in Assoziation mit Expression und Funktion des AT2R in der NNR zu analysieren. Es wurde nachgewiesen, dass eine Renin-unabhängige Stimulation der Aldosteronsynthese durch die HKD in verschiedenen Tierstämmen (Sprague Dawley und transgene CxmAT2R- Ratten der Linie 235) mit Erhöhung der Expressionen des AT2R und der Proteinkinase p85α einhergehen. Die Ergebnisse über TASK-3 stellen die bisher publizierten Befunde in Frage, sodass eine abschließende Beurteilung der Lokalisation und Regulation offen bleiben muss. Wie erwartet, kam es nach Kaliumbelastung in allen untersuchten Tierstämmen zur Erhöhung der gemessenen Plasmakonzentration für Aldosteron bei annähernd gleichbleibenden Plasmareninkonzentrationen. Dieser Effekt konnte durch mRNA- Untersuchungen in der ISH bestätigt werden. Die relativen Expressionen des AT2R in der NNR ergaben für die SD und WT- Tiere signifikante Anstiege. Da die TGR des zweiten Experiments bereits eine basale Überexpression des AT2R aufwiesen, war hier keine weitere Stimulation des AT2R mehr zu verzeichnen. Die Bedeutung von Differenzierungsprozessen/ Steigerung der Proteinbiosynthese wird durch die nachgewiesene Stimulation der relativen Expression von p85α in beiden Experimenten nahegelegt. Weitere Ziele der Arbeit waren Untersuchungen zur Lokalisation des TASK-3- Kanals in der NN. Analog zur bekannten AS- Sequenz von TASK-3 wurden codierende Abschnitte mit geringer Homologie zu anderen Kaliumkanälen gewählt. Dabei konnte unabhängig von der Diät spezifische cDNA sowohl aus NNR und NNM amplifiziert werden. Auch in der ISH konnte TASK-3 im Bereich der ZG, ZF und in geringem Maße auch in weiter innen liegenden Schichten gefunden werden, sodass die Richtigkeit der bisher zu TASK-3 veröffentlichten Daten angezweifelt werden muss. Auf Proteinebene (IHC) zeigte sich eine kräftige Färbung im NNM sowie nur einzelne, gefärbte Zellnester ohne Zuordnung zu ZF bzw. ZG. Die Daten weisen darauf hin, dass TASK-3 in unterschiedlichem Maße in der gesamten Nebenniere exprimiert wird und die Regulation der relativen Expression nicht eindeutig durch Kalium reguliert oder funktionell mit dem AT2- Rezeptor assoziiert ist. Die im Rahmen der vorliegenden Arbeit erhobenen Daten betonen die Bedeutung der Regulation des RAAS durch kaliumreiche Diät für die Aldosteronproduktion und dessen funktionellen Zusammenhang mit Expressionen verschiedener Rezeptoren der Nebenniere. Von besonderem Interesse wird in zukünftigen Untersuchungen sein, inwieweit es Interaktionen zwischen AT2R, p85α, weiteren Adapterproteinen und den hyperpolarisierenden Kaliumkanälen auf intrazellulärer Signalebene sowie Liganden-abhängigen Signaltransduktionswegen gibt. Auch sollte der Einfluss lokaler Renin- Angiotensin- Systeme auf die Homöostase bei systemischer Applikation von Rezeptorantagonisten und –agonisten weiter untersucht werden. Das transgene CxmAT2R- Modell oder auch die Verwendung des kürzlich neu entwickelten AT2- Rezeptoragonisten (Compound 21) könnten in diesem Zusammenhang zu aufschlussreichen Erkenntnissen führen.
Die Morphologie der Podozytenfußfortsätze und eine intakte glomeruläre Basal-membran (GBM) sind essentiell für die Filtration des Blutes. Bei der diabetischen Nephropathie (DN), deren Inzidenz in den letzten Jahrzehnten deutlich gestiegen ist, kommt es neben pathologischen Veränderungen der Fußfortsätze auch zu Ablösung und Verlust der Podozyten. Als hochdifferenzierte, postmitotische Zellen können Podozyten nicht regeneriert werden. Jeder Verlust ist damit irreversibel. Aber auch weitreichende Veränderungen der GBM, sowie eine Sklero¬sierung der Glomeruli sind zu beobachten. Dies führt zu einer progredienten Nieren¬insuffizienz, welche oft im Nierenversagen endet. Man geht davon aus, dass glomeru¬lärer Hypertonus, der zur mechanischen Dehnung von Podozyten führt, ein wichtiger Teil des Pathomechanismus der DN ist. Welchen Einfluss mechanische Kräfte auf Podozyten haben war in der Vergangenheit nur unzureichend untersucht. Daher wurde von der AG Endlich ein Dehnungsapparat entwickelt, mit dem Zellen einer zyklischen mechanischen Dehnung ausgesetzt werden können. So konnte gezeigt werden, dass Podozyten mechanosensitiv sind und unter anderem mit Veränderungen des Aktin-Zytoskeletts auf mechanische Dehnung reagieren. Die vorliegende Arbeit zeigt zum einen, dass kultivierte Podozyten unter mechanischer Dehnung vermehrt das Protein Fibronektin bilden. Fibronektin ist ein essentielles Matrixprotein und spielt als Mechanotransducer in der Literatur eine große Rolle. Zum anderen zeigt die Arbeit, dass Fibronektin eine Schlüsselrolle hinsichtlich der Adhäsivität von kultivierten Podozyten unter mechanischer Dehnung spielt. Um das zu untersuchen, wurden Podozyten mit Fibronektin-Knockdown und -Knockout generiert und der Einfluss auf die Morphologie und Adhäsiviät der Podozyten untersucht. Es konnte gezeigt werden, dass Podozyten ohne Fibronektin bei mechanischer Dehnung nach drei Tagen nur noch zu etwa 20 % auf der Membranoberfläche adhärent waren. Diese Ergebnisse verdeutlichen, dass Fibronektin für die Adhäsion von kultivierten Podozyten unter mechanischer Dehnung eine zentrale Rolle spielt. Durch Immun¬fluoreszenz¬färbung konnte an Biopsien nachgewiesen werden, dass Fibronektin in der GBM von Patienten mit DN vermehrt eingelagert wird. Die vorliegenden Ergebnisse deuten darauf hin, dass mechanische Dehnung der Podozyten in vivo zu einer Akkumulation von Fibronektin in der GBM führt, was langfristig sehr wahrscheinlich die Eigenschaften der GBM und die glomeruläre Filtration negativ beeinflusst. Die genaueren Zusammenhänge zwischen Mechanotransduktion und Fibronektin-expression aufzuschlüsseln sollte daher Ziel weiterführender Forschungsarbeiten sein, um in Zukunft einen therapeutischen Ansatz zur Behandlung der diabetischen Nephropathie zu entwickeln.
80% of chronic kidney diseases are caused by the loss and the damage of a differentiated and postmitotic cell type, the podocytes. The size-selectivity of the blood filtration barrier is highly dependent on the complex interdigitation of the podocyte foot processes as well as of the slit membrane which is spanned in between. Changes of this specific morphology as well as a detachment of podocytes lead to the clinical hallmark of a nephrotic syndrome e.g. proteinuria and oedema formation.
Since specific drugs or therapies are usually not available, patients are often dependent on dialysis and transplantation. Therefore, intensive studies are necessary to understand the pathogenesis of glomerulopathies as well as to identify specific drugs. In the past, it was already demonstrated that the zebrafish is an ideal model to study kidney function and to screen for drugs, since the larvae quickly develop a simple glomerulus that is comparable to the glomeruli of mice, rat and human.
In the present work, a zebrafish model was established to study a specific glomerulopathy named focal segmental glomerulosclerosis (FSGS). FSGS is mainly characterized by histology of the glomeruli which shows segmental scar formation and matrix deposition due to an activation of parietal epithelial cells (PEC) lining the Bowman’s capsule. For this purpose, we used the nitroreductase/metronidazole (NTR/MTZ) system, in which a cytotoxic agent is exclusively generated in podocytes by the enzyme NTR resulting in apoptosis of cells. Firstly, the parameters for development of an FSGS-like disease were evaluated and the glomerular response to podocyte depletion was examined during three days after the induction of podocyte damage. Using classic histological techniques, immunofluorescence staining and transmission electron microscopy, it was possible to demonstrate that zebrafish larvae phenocopy human FSGS in important characteristics after partial podocyte depletion. Secondly, by intravascular injection of fluorescence-labeled high molecular weight dextran, we found that the filtration barrier became leaky. Moreover, we identified a severe podocyte foot process effacement, formation of subpodocyte space pseudocysts and loss of the slit membrane protein podocin. Morphometrical, histological and ultrastructural analysis revealed an enlargement of the glomerulus, proliferation of cuboidal PECs and intraglomerular deposition of extracellular matrix components, all typical hallmarks of FSGS. Further, we observed adhesions between the parietal and the visceral glomerular cell layer forming sclerotic lesions. However, it remains still unclear whether an inflammatory response is involved in the development of sclerotic lesions. Our microscopic analysis provided some evidence for immigration of immunocompetent cells like neutrophils, presumably due to induction of apoptosis in our model.
Taken together, in the present work a zebrafish model was established with characteristics of mammals FSGS which will be useful for pathomechanism studies as well as for drug screening.
Podocytes are highly specialized kidney cells that are attached to the outer aspect of the glomerular capillaries and are damaged in more than 75% of patients with an impaired renal function. This specific cell type is characterized by a complex 3D morphology which is essential for proper filtration of the blood. Any changes of this unique morphology are directly associated with a deterioration of the size-selectivity of the filtration barrier. Since podocytes are postmitotic, there is no regenerative potential and the loss of these cells is permanent. Therefore, identification of small molecules that are able to protect podocytes is highly important. The aim of this work was to establish an in vivo high-content drug screening in zebrafish larvae. At first, we looked for a reliable podocyte injury model which is fast, reproducible and easy to induce. Since adriamycin is commonly used in rodents to damage podocytes, we administered it to the larvae and analyzed the phenotype by in vivo microscopy, (immuno-) histology and RT-(q)PCR. However, adriamycin did not result in a podocyte-specific injury in zebrafish larvae. Subsequently, we decided to use a genetic ablation model which specifically damages podocytes in zebrafish larvae. Treatment of transgenic zebrafish larvae with 80 µM metronidazole for 48 hours generated an injury resembling focal and segmental glomerulosclerosis which is characterized by podocyte foot process effacement, cell depletion and proteinuria. Following this, we established an in vivo high-content screening system by the use of a specific screening zebrafish strain. This screening strain expresses a circulating 78 kDa eGFP-labeled Vitamin D-binding fusion protein, which passes the filtration barrier only after glomerular injury. Therefore, we had an excellent readout to follow podocyte injury in vivo. We generated a custom image analysis software that measures the fluorescence intensity of podocytes and the vasculature automatically on a large scale. Furthermore, we screened a specific drug library consisting of 138 compounds for protective effects on larval podocytes using this in vivo high-content system. The analysis identified several initial hits and the subsequent validation experiments identified belinostat as a reliable and significant protective agent for podocytes. These results led to a patent request and belinostat is a promising candidate for a clinical use and will be tested in mammalian podocyte injury models.
Until today, more than 17% of the population in Mecklenburg Western-Pomerania suffer from chronic kidney disease (CKD) which was revealed by the SHIP study (Study of Health in Pomerania). 20% of CKD cases can be traced back to glomerulopathies. One common characteristic of glomerulopathies is the morphologic change of the glomerular filtration barrier which consists of endothelial cells, the glomerular basement membrane and podocytes. Under healthy conditions, the foot processes of the podocytes interdigitate with the foot processes of the neighboring podocytes with a filtration slit in between. Apart from the slit membrane protein nephrin, typical adherens junction proteins like occludin or JAM-A are also expressed at this cell-cell junction. This junction is therefore considered to be a specialized type of adherens junction, necessary to maintain the size-selectivity of the filtration barrier. During podocyte injury, podocyte foot processes lose their characteristic morphology and the typical meandering filtration slit becomes linearized, a process which is described as foot process effacement.
Since morphological change is directly linked to change or loss of function, ultrastructural analysis of the foot processes is necessary for diagnostics and research. By using 3D-structured illumination microscopy (3D-SIM), we quantified these morphological changes as well as studied a possible biomarker, the tight junction protein claudin 5 (CLDN5). Our study showed a spatially restricted up-regulation of CLDN5 in effaced filtration slit areas in biopsies of patients suffering from minimal change disease (MCD), focal and segmental glomerulosclerosis (FSGS) as well as in mice after NTS injection and in the uninephrectomy DOCA-salt mouse model. CLDN5/nephrin ratios of biopsies from patients with glomerulopathies and of tissue received from NTS-treated mice were significantly higher compared to controls. We found that in patients the CLDN5/nephrin ratios were negatively correlated with the filtration slit density. Since CLDN5 up-regulation was observed in several areas of high filtration slit density, we hypothesized that CDLN5 upregulation preceded visible foot process effacement. Taken together, we suggest that CLDN5 could be a helpful biomarker to identify an early change of the foot process morphology in addition to filtration slit density measurement. Additionally, correlation analysis of foot process effacement with patient data showed a significant negative correlation of the filtration slit density with proteinuria in MCD patients.
Die Prävalenz der chronischen Nierenerkrankung (CKD) nahm in den letzten Jahren
global stetig zu. Die häufigsten Ursachen für die CKD, arterielle Hypertonie und
Diabetes mellitus, sind oftmals mit einer glomerulären Hypertonie assoziiert, die eine
erhöhte mechanische Belastung der hochspezialisierten und postmitotischen
Podozyten verursachen kann. Dies führt zum sogenannten Effacement, einer
Verbreiterung und Abflachung der durch ein komplexes Aktin-Zytoskelett gestützten
Podozytenfußfortsätze und schließlich zum Ablösen von Podozyten von der
glomerulären Basalmembran. Auch kultivierte Podozyten reagieren auf mechanische
Dehnung mit Veränderungen ihres Aktin-Zytoskeletts. Über welchen Mechanosensor
die Podozyten mechanische Dehnung wahrnehmen, ist jedoch nicht geklärt.
Filamine bilden mit F-Aktin stabile Netzwerke und können bei mechanischer Veränderung
der Netzwerke durch Freilegung von Proteinbindestellen als Mechanosensor
fungieren. Die Herunterregulation von Filamin A in kultivierten Mauspodozyten führte
zu einem deutlichen Verlust der Aktin-Stressfasern. Zudem zeigten wir zum ersten
Mal, dass die Synaptopodin-Expression kultivierter Podozyten abhängig von der
Filamin A-Expression war. Ferner konnten wir Filamin A als neuen Interaktionspartner
von Synaptopodin, einem podozytenspezifischen Aktin-bindenden Protein, aufzeigen.
Da Filamine in mechanisch gedehnten kultivierten Mauspodozyten vermehrt exprimiert
wurden und der Verlust von Filamin A darüber hinaus zu einer reduzierten Expression
von Fokaladhäsionsproteinen führte, gingen wir von einer geringeren Adhäsivität
mechanisch gedehnter Filamin A Knockout-Podozyten aus. Interessanterweise war
die Adhäsivität erst nach gemeinsamem Verlust von Filamin A und B reduziert, was
wir auf einen Rescue-Mechanismus zwischen den Isoformen zurückführten. Auf Basis
dieser Ergebnisse nahmen wir auch eine erhöhte Expression von Filamin A in Podozyten
unter mechanischer Belastung in vivo an. In der Tat exprimierten Podozyten in
einem Mausschadensmodell glomerulärer Hypertonie sowie in Glomeruli von Patienten
mit diabetischer Nephropathie vermehrt Filamin A in den Podozytenfußfortsätzen.
Zusammenfassend legen die Ergebnisse nahe, dass Filamine entscheidende Funktionen
hinsichtlich der Aktin-Organisation sowie der Adhäsivität von mechanisch gedehnten
Podozyten ausüben und sogar möglicherweise als Mechanosensor in
Podozyten fungieren können, was in weiterführenden Studien untersucht werden wird.