Refine
Document Type
- Doctoral Thesis (5)
Language
- German (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- Arzneistofftransporter (2)
- Antibiotikum (1)
- Arzneimittel (1)
- Arzneimittelinteraktion (1)
- Arzneistofftransport (1)
- Aufnahme (1)
- Caco-2 (1)
- Caco-2-Zellen (1)
- Colitis Ulcerosa (1)
- Drug transporter (1)
Institute
Transportproteine und metabolisierende Enzyme sind wesentliche Bestandteile der intestinalen Absorptionsbarriere und entscheidend für die Aufnahme, Verteilung, Metabolisierung und Exkretion von Nährstoffen, Arzneimitteln oder Xenobiatika. Es gibt Hinweise darauf, dass sowohl deren Expression als auch Funktion im Zusammenhang mit entzündlichen Prozessen beeinträchtigt sind. Um die Auswirkung von Colitis Ulcerosa auf das lokale Expressionsmuster klinisch relevanter intestinaler Transporter und Enzyme abschätzen zu können, wurde in der vorliegenden Arbeit u.a. deren Genexpression, Proteingehalt sowie mögliche krankheitsbezogene Regulationsmechanismen untersucht. Mit Biopsien aus entzündetem und nicht entzündetem Gewebe von 10 Colitis Ulcerosa-Patienten als auch mit gesundem Kolongewebe ohne Entzündungszeichen wurden mittels real-time quantitative PCR mRNA- (9 Enzyme, 15 Transporter, 9 Zytokine) und microRNA- (N = 54) Expressionsanalysen durchgeführt. Der Proteingehalt wurde durch validierte HPLC-MS/MS targeted proteomics Verfahren ermittelt. Die Genexpression folgender Enzyme und Transporter zeigten sich während intestinaler Entzündung signifikant reduziert: CYP2B6, CYP2C9, UGT1A1, UGT1A3, UGT2B7, UGT2B15, ABCB1, ABCG2, SLC16A1 und SLC22A3. Ein signifikanter Anstieg der mRNA-Level im entzündeten Gewebe von Colitis Ulcerosa-Patenten konnte für ABCC1, ABCC4, ORCTL2 und OATP2B1 nachgewiesen werden. Bezogen auf den Proteingehalt ließen sich die auf mRNA Ebene beobachteten Expressionsunterschiede nur für MCT1 bestätigen. Korrelationsanalysen demonstrierten den möglichen Einfluss von Zytokinen und microRNAs auf die Regulation intestinaler Enzym- und Transporterexpression. Insbesondere scheinen TNFα, IL17 A sowie miR-142-3p/5p, miR-146a-5p und miR 223-3p starken Einfluss auf krankheitsbezogene Expressionsmuster zu besitzen. Zusammenfassend kann gesagt werden, dass Colitis Ulcerosa mit komplexen Veränderungen in der intestinalen Expression von metabolisierenden Enzymen, Transportern, Zytokinen und microRNAs einhergeht, welche sowohl Auswirkungen auf die medikamentöse Therapie als auch auf die Pathogenese der Erkrankung selbst haben können.
Die gleichzeitige Gabe von Arzneimitteln kann durch Inhibition oder Induktion von intestinalen Transportproteinen bzw. metabolischen Enzymen unerwünschte Arzneimittelinteraktionen verursachen. Bewirkt wird der induktive Effekt durch die Aktivierung von nukleären Rezeptoren wie PXR. Aktuell sind keine in vitro-Modelle verfügbar, die die Interaktion auf intestinaler Ebene infolge von Induktionsprozessen prognostizieren können. Für intestinale Absorptions- und inhibitorische Arzneistofftransportstudien werden bisher die häufig genutzten Caco-2-Zellen verwendet, da sie enterozytenartige Eigenschaften besitzen. Allerdings gibt es einige Unklarheiten, die das Caco-2-Modell betreffen, wie bspw. der optimale Zeitraum der Zellkultivierung, das fragliche Vorhandensein von nukleären Rezeptoren und die umstrittene Repräsentanz von Colon-Karzinomzellen für den intestinalen, jejunalen Arzneimitteltransport.
Ziel dieser Arbeit war es somit, die Eignung der präklinisch genutzten Caco-2-Zellen als in vitro-Modell für Transporter-bedingte Arzneimittelinteraktion und intestinalen Arzneimitteltransport zu untersuchen. Hierzu wurde die Expression klinisch relevanter intestinaler Arzneistofftransporter, Metabolisierungsenzyme und nukleärer Rezeptoren in Caco-2-Zellen auf Gen- und Proteineben mittels real time-RT PCR (TaqMan®-Prinzip) und LC-MS/MS-basiertem targeted proteomics bestimmt und mit der Expression in humanem Jejunum verglichen. Ferner wurde die Expression der erwähnten Determinanten in Abhängigkeit von der Kultivierungszeit und nach Induktion mit den prototypischen Induktoren Carbamazepin, Efavirenz, Hyperforin, Hypericin und Rifampicin untersucht. Zuletzt wurde der Einfluss der Induktoren auf die Funktion des Transporters ABCB1, anhand eines bidirektionalen Transportassays mit den radioaktivmarkierten ABCB1-Substraten [3H]-Digoxin und [3H]-Talinolol, ermittelt.
Die Expression der Transporter und nukleären Rezeptoren auf Gen- und Proteinebene in Caco-2-Zellen unterschieden sich deutlich zu der von jejunalem Gewebe. Für die Transporter ABCB1, ABCC2, OATP1A2, OATP2B1, PETP1 und das Enzym UGT1A1 konnte eine signifikante Zunahme der mRNA-Expression mit der Dauer der Kultivierungszeit festgestellt werden, die auf Proteinebene nicht gezeigt werden konnte. Die Induktoren Carbamazepin, Hyperforin, Hypericin und Rifampicin wiesen einen Effekt auf die mRNA-Expression, nicht aber auf die Proteinmenge der Transporter auf. In Übereinstimmung zu den Befunden der fehlenden Transporterinduktion konnte kein Effekt der Induktoren auf die Funktion von ABCB1 beobachtet werden.
Caco-2-Zellen sind daher nicht als in vitro-Modell geeignet um Arzneimittel-interaktionen prognostizieren zu können, die durch die Induktion von Transportern entstehen.
Das bisherige Wissen über den Einfluss von pharmazeutischen Hilfsstoffen auf die Funktion von Arzneistofftransportern ist insbesondere für die pharmakokinetisch bedeutsame Gruppe der Aufnahmetransporter sehr beschränkt. Die im Rahmen dieser Arbeit durchgeführten in vitro Untersuchungen liefern umfangreiche und systematische Daten zu inhibitorischen Effekten von häufig verwendeten pharmazeutischen Hilfsstoffen auf die Transportfunktion der in vielen pharmakologisch bedeutsamen Geweben exprimierten organic cation transporter (OCT) 1-3 sowie H+/peptide cotransporter (PEPT) 1/2. Für viele dieser pharmakokinetisch-relevanten Aufnahmetransporter sind es die erstmals beschriebenen Interaktionen mit pharmazeutischen Hilfsstoffen.
Des Weiteren konnte gezeigt werden, dass der pharmazeutische Hilfsstoff Cremophor® EL (CrEL) neben der bereits bekannten Hemmung von Phase-I-Metabolismus und Effluxtransport auch die zelluläre Aufnahme von Arzneistoffen beeinflusst, wie am klinisch relevanten Beispiel des Doxorubicin dargestellt wurde. Hierbei beeinflusste der genannte Hilfsstoff die zelluläre Akkumulation von Doxorubicin über die Aufnahmetransporter organic anion transporting polypeptide (OATP) 1A2 sowie OCT1, OCT2 und OCT3 in artifiziellen Zellmodellen und zeigte sich zudem auf funktioneller Ebene anhand einer erheblich veränderten Zytotoxizität in MDA-MB-231 Brustkrebszellen. Auf diesem Wege könnten pharmazeutische Hilfsstoffe zusammen mit Transporter-Polymorphismen wie beispielsweise für OATP1A2, deren Rolle für Doxorubicin in dieser Arbeit auch untersucht wurde, für unaufgeklärte Veränderungen sowie Variabilität der Pharmakokinetik, Effektivität und Sicherheit von Arzneistoffen verantwortlich sein.
Die spezifische Normalisierung von in vitro Transportdaten auf den Transportproteingehalt anstelle des Gesamtproteingehaltes kann dabei zur erheblichen Verbesserung der Beurteilung von Transportaktivitäten einzelner Transportproteine sowie deren Beteiligung am Transportprozess eines Arzneistoffes beitragen, wie für die Aufnahme von Doxorubicin und der damit assozierten Zytotoxizität über die OATP1A2-Varianten gezeigt werden konnte.
In der durchgeführten in vivo Studie zeigten sich durch CrEL hervorgerufene Veränderungen in der systemischen Pharmakokinetik sowie noch weit drastischere Auswirkungen auf die Akkumulation des Modellarzneistoffes Clarithromycin (CLA) am Wirkort in der Lunge. Die Hemmung des Cytochrom P450 (CYP) 3A-Metabolismus und des multidrug resistance protein 1 (ABCB1)-vermittelten Effluxtransportes in Leber, Nieren und alveolären Makrophagen konnte hierbei als möglicher Mechanismus für die erhöhte Exposition von CLA im Blutplasma und in den bronchoalveolären Lavage-Zellen identifiziert werden. Allerdings ist die Interpretation von derartigen in vivo-Befunden aufgrund des komplexen und zum Teil simultan ablaufenden Wechselspiels von zahlreichen Aufnahme- und Effluxtransportern sowie von Metabolisierungsenzymen nicht eindeutig konklusiv.
Derartiges Wissen zur Interaktion pharmazeutischer Hilfsstoffe mit pharmakologisch bedeutsamen Enzymen und Transportern kann dazu beitragen, gewünschte Wirkungen zu verstärken sowie unerwünschte Effekte zu minimieren. Das Zusammenspiel der Einflüsse von pharmazeutischen Hilfsstoffen auf Metabolismus, Efflux und Aufnahme kann somit sowohl zu synergistischen als auch zu antagonistischen Effekten auf die Absorption, Verteilung und Elimination eines Arzneistoffes führen. Weiterhin sollte berücksichtigt werden, dass viele Erkrankungsbilder sowie Polymorbidität nicht selten die Therapie mit mehreren Arzneimitteln erfordern, welches auch mit einem erhöhten Risiko für Arzneistoff-Hilfsstoff-Interaktionen verbunden ist.
Die Erkenntnisse dieser Arbeit zum Einfluss von häufig verwendeten Hilfsstoffen auf die Funktion von Arzneistofftransportern unterstreichen, dass von den zunächst als pharmakologisch inert eingestuften Substanzen in Arzneimitteln durchaus pharmakokinetische Effekte ausgehen können.
Dieses Wissen sollte insbesondere bei der präklinischen Entwicklung von Arzneistoffen berücksichtigt werden. Andernfalls drohen möglicherweise Fehlinterpretationen, wenn neue Entwicklungskandidaten in Anwesenheit von pharmazeutischen Hilfsstoffen (z.B. zur Verbesserung der Löslichkeit) auf ihre Affinität zu Metabolisierungsenzymen und Transportern geprüft werden.
Neben der etablierten Anwendung als pharmazeutischer Hilfsstoff rückt in der letzten Zeit auch vermehrt die Nutzung von beispielsweise Cyclodextrinen wie Hydroxypropyl-β-cyclodextrin als Wirkstoff zur Behandlung von Krankheiten wie Krebs oder Arteriosklerose in den Fokus der Forschung. Weitere Untersuchungen zum Einfluss von pharmazeutischen Hilfsstoffen und deren Potential zur Interaktion mit Arzneistoffen, der Optimierung bestehender Therapien sowie möglicher Anwendungen als Wirkstoff sollten im Fokus künftiger in vitro und in vivo Studien stehen.
Transportproteine spielen für viele Arzneistoffe eine bedeutende Rolle bei der Absorption, Verteilung und Elimination und können folglich auch maßgeblich über die Anflutung eines Wirkstoffs am Ort der Wirkung und / oder Nebenwirkung(en) entscheiden. Ziel dieser Arbeit war es, die Affinität von Tigecyclin zu hepatischen Aufnahme- und Effluxtransportern zu bestimmen. Aus pharmakokinetischen Studien war bekannt, dass das Glycylcyclin hauptsächlich hepatisch ausgeschieden wird, wobei die zugrundeliegenden molekularen Transportmechanismen unbekannt waren, d.h. wie Tigecyclin von den Hepatozyten aufgenommen wird und wieder in die Galle bzw. in das Blut abgegeben wird. Die physikochemischen Eigenschaften der Substanz (logP-Wert: 0,8; pKs-Wert: 0,25/ 8,76) sprechen gegen eine rein passive Diffusion über biologische Membranen.
Um den hepatozellulären Aufnahmetransport aufzuklären, wurden Kompetitionsversuche und direkte Aufnahmeversuch mit Hilfe von stabil transfizierten HEK293-Zellmodellen, die Transportproteine der SLC- und SLCO-Familie stabil überexprimieren, durchgeführt. Unter Verwendung von inside-out-Vesikeln wurde der Effluxtransport von Tigecyclin über MRP2- und MRP3-Transporter untersucht. Um sicher zu gehen, dass die Zellmodelle funktionstüchtig sind, wurde deren Funktionalität vor jedem Versuch mittels bekannter Standardsubstrate und Standardinhibitoren bestätigt. Die direkten Aufnahmeversuche wurden mittels LC-MS/MS analysiert.
Tigecyclin zeigte im verwendeten Konzentrationsbereich und den angewendeten Inkubationszeiten keine zytotoxische Wirkung auf die Versuchszellen. Mit den Kompetitionsassays konnte nachgewiesen werden, dass Tigecyclin einen hemmenden Einfluss auf den Transport von bekannten OATP1B3- und OATP2B1-Referenzsubstraten hat, jedoch keine Beeinflussung von OATP1B1 und NTCP zeigte. Des Weiteren konnte in direkten Aufnahmeversuchen gezeigt werden, dass Tigecyclin ein Substrat des ubiquitär exprimierten Transporters OATP2B1 ist. Ein signifikanter Nachweis, dass Tigecyclin ein Substrat von OATP1B1-, OATP1B3- und NTCP-Transportern ist, gelang jedoch nicht.
Im Bezug auf Effluxtransporter konnte eine Kompetition von Tigecyclin mit dem MRP2- und MRP3-vermittelten Transport in inside-out-Vesikeln nachgewiesen werden. Ein direkter Transport von Tigecyclin über die Vesikel ließ sich jedoch nicht beweisen. Aufgrund methodischer Schwierigkeiten und der sehr begrenzten Bearbeitungszeit, konnten die Versuche nicht oft genug durchgeführt und keine entsprechend belastbaren Daten generiert werden.
Zusammenfassend kann aus den durchgeführten Untersuchungen abgeleitet werden, dass Tigecyclin ein Substrat von OATP2B1 ist und OATP2B1 somit möglicherweise für die hepatische Aufnahme des Arzneistoffes verantwortlich ist. Ob noch andere Transporter eine Rolle spielen, bleibt weiterhin unbekannt. Auch die konkrete Transportkinetik mit der Affinität (Km) und der Transportkapazität (vmax), bleibt nach diesen Versuchen noch unklar. Des Weiteren legen die Ergebnisse dieser Arbeit nahe, dass bei gleichzeitiger Tigecyclin-Gabe ein gewisses Risiko für unerwünschte pharmakokinetische Interaktionen mit Substraten der Transporter OATP1B3, OATP2B1, MRP2 und MRP3 besteht.
Als Fazit kann gesagt werden, dass mit dieser Arbeit ein Beitrag zur Aufklärung des Arzneimitteltransports und der Transporteigenschaften von Tigecyclin in den Hepatozyten geleistet werden konnte. Zusätzlich konnten weitere Erkenntnisse zur Kompetition gewonnen werden. In wie weit die in vitro Resultate auf in vivo Mechanismen übertragbar sind, ist unklar und bietet Möglichkeiten für weiterführende Untersuchungen.
Die Sicherheit und Wirksamkeit der Arzneimitteltherapie wird maßgeblich von Transportproteinen beeinflusst. Die zelluläre Lokalisation von Transportern hat hierbei wesentlichen Einfluss darauf, ob diese als funktionelle Aufnahme- oder Effluxtransporter fungieren. Für den menschlichen Darm ist die Lokalisation einiger Transporter noch unklar. Ein Beispiel hierfür ist der organic cation transporter (OCT1), welcher für die intestinale Aufnahme zahlreicher kationischer Arzneistoffe, wie beispielsweise Morphin verantwortlich gemacht wird. Bisher gibt es allerdings widersprüchliche Aussagen über die exakte Lokalisation dieses Transporters in der Zellmembran von Enterozyten. Folglich ist die tatsächliche Bedeutung dieses Proteins für die Absorption von Arzneistoffen bis heute ungeklärt.
Daher war das Ziel dieser Arbeit die Expression, Lokalisation und Funktion von OCT1 in Enterozyten anhand verschiedener labortechnischer Methoden näher zu charakterisieren.
Mittels Immunfluoreszenzfärbung wurde versucht die Lokalisation von OCT1 im Zellmodell zu bestimmen. Ebenfalls im Zellmodell erfolgte die Untersuchung des vektoriellen Transportes von Morphin mittels Transwellassay. Diese, sowie entsprechende Analysen vitalen intestinalen Gewebes in der Ussing-Kammer, wurden genutzt, um indirekt Rückschlüsse auf die Transporterlokalisation zu ziehen.
Trotz eindeutiger und der Hypothese entsprechender Expression und Funktion in MDCKII-OCT1/P-gp-Zellen, konnten im Rahmen dieser Arbeit keine eindeutigen Ergebnisse bezüglich der Lokalisation von OCT1 in Caco-2-Zellen generiert werden.
Caco-2-Zellen sollten als Zellmodell für Enterozyten, insbesondere hinsichtlich der Charakterisierung von OCT1, neu bewertet werden, da aktuellen Erkenntnissen entsprechend möglicherweise keine signifikante Expression von OCT1 in diesen Zellen vorliegt. Auch das genutzte OCT1-Modellsubstrat Morphin ist möglicherweise problematisch. Es ist darauf hinzuweisen, dass es sich bei den vorliegenden Daten aufgrund der geringen Versuchszahl nur um vorläufige Ergebnisse handeln kann, welche in zukünftigen Arbeiten verifiziert werden sollten.
Zusammenfassend kann festgehalten werden, dass die vorliegende Arbeit zwar keine neuen Erkenntnisse bezüglich der Lokalisation von OCT1 in Enterozyten erbringen konnte, jedoch die Bedeutung eines kritischen Umgangs mit etablierten Methoden und deren Ergebnissen unterstreicht.