Refine
Document Type
- Doctoral Thesis (8)
Has Fulltext
- yes (8)
Is part of the Bibliography
- no (8)
Keywords
- 4169246-9 (1)
- Adultneurogenese (1)
- Arzneimittel (1)
- Bromdesoxyuridin (1)
- Carcinus maenas (1)
- Carcinus meanas (1)
- Dinosaurier (1)
- Entomologie (1)
- Entomology (1)
- Entwicklung (1)
Lebenslang persistierende Neurogenese ist ein fester Bestandteil des olfaktorischen Systems bei reptanten Dekapoden („Panzerkrebse“; lat. reptans – kriechend; griech. deca – zehn, podes – Füße). Dabei generiert das deutocerebrale proliferative System über die Larvalphase hinaus neue Neuronen, die in die bestehenden neuronalen Netzwerke der deutocerebralen chemosensorischen Loben (auch „olfaktorische Loben“) integriert werden. Während in zahlreichen Studien die phänotypische Ausprägung, der zelluläre Mechanismus zur Umsetzung adulter Neurogenese und deren regulierende Faktoren umfassend untersucht und zum Teil kontrovers diskutiert wurden, ist über die phylogenetische Verbreitung in anderen Taxa der Malacostraca („Höhere Krebse“; griech. malakos – weich, ostrakon – Schale) nichts bekannt. Daher wurden im Rahmen der vorliegenden Arbeit verschiedene Vertreter aus Malakostrakentaxa mit unterschiedlicher phylogenetischer Position untersucht und unter evolutionären Aspekten diskutiert. Wie gezeigt werden konnte, ist adulte Neurogenese vermutlich ein plesiomorphes Merkmal der Eumalacostraca, welches in Vertretern der Euphausiacea („Leuchtgarnelen“; griech. phausis – Leuchten) und Peracarida („Ranzenkrebse“; griech. pera – Ranzen, karides – kleine Seekrebse) reduziert wurde. In Abhängigkeit von der zugrunde gelegten Verwandtschaftshypothese ist die Reduktion der persistierenden Neurogenese entweder mehrfach unabhängig (konvergent) erfolgt oder ein apomorphes Merkmal eines Monophylums aus Euphausiacea und Peracarida. Dagegen ist innerhalb der Decapoda eine Ausdehnung und strukturelle Erweiterung des deutocerebralen proliferativen Systems feststellbar. Um einen möglichen Zusammenhang zur Komplexität und Bedeutung des olfaktorischen Systems zu überprüfen, wurden zusätzlich die neuroanatomischen Merkmale von Vertretern der Decapoda und der Peracarida (am Beispiel der Amphipoda) vergleichend betrachtet. Dabei konnte innerhalb der Decapoda eine Korrelation zwischen der Entwicklung des deutocerebralen proliferativen Systems und der Evolution des akzessorischen Lobus bei Vertretern der Reptantia sowie dessen Reduktion in der Gruppe der Meiura, zu denen die Vertreter der Brachyura („Echte Krabben“; griech. brachys – kurz, oura – Schwanz) und Anomura („Mittelkrebse“; griech. anomalos – ungleich) gehören, festgestellt werden. Basierend auf diesen Ergebnissen wurden Vermutungen über die im Adultus neu generierten Neuronenklassen und somit über die Funktion adulter Neurogenese aufgestellt. In allen anderen untersuchten Taxa der Malacostraca konnte dagegen keine Korrelation mit der Komplexität des olfaktorischen Systems festgestellt werden.
Podocytes are highly specialized kidney cells that are attached to the outer aspect of the glomerular capillaries and are damaged in more than 75% of patients with an impaired renal function. This specific cell type is characterized by a complex 3D morphology which is essential for proper filtration of the blood. Any changes of this unique morphology are directly associated with a deterioration of the size-selectivity of the filtration barrier. Since podocytes are postmitotic, there is no regenerative potential and the loss of these cells is permanent. Therefore, identification of small molecules that are able to protect podocytes is highly important. The aim of this work was to establish an in vivo high-content drug screening in zebrafish larvae. At first, we looked for a reliable podocyte injury model which is fast, reproducible and easy to induce. Since adriamycin is commonly used in rodents to damage podocytes, we administered it to the larvae and analyzed the phenotype by in vivo microscopy, (immuno-) histology and RT-(q)PCR. However, adriamycin did not result in a podocyte-specific injury in zebrafish larvae. Subsequently, we decided to use a genetic ablation model which specifically damages podocytes in zebrafish larvae. Treatment of transgenic zebrafish larvae with 80 µM metronidazole for 48 hours generated an injury resembling focal and segmental glomerulosclerosis which is characterized by podocyte foot process effacement, cell depletion and proteinuria. Following this, we established an in vivo high-content screening system by the use of a specific screening zebrafish strain. This screening strain expresses a circulating 78 kDa eGFP-labeled Vitamin D-binding fusion protein, which passes the filtration barrier only after glomerular injury. Therefore, we had an excellent readout to follow podocyte injury in vivo. We generated a custom image analysis software that measures the fluorescence intensity of podocytes and the vasculature automatically on a large scale. Furthermore, we screened a specific drug library consisting of 138 compounds for protective effects on larval podocytes using this in vivo high-content system. The analysis identified several initial hits and the subsequent validation experiments identified belinostat as a reliable and significant protective agent for podocytes. These results led to a patent request and belinostat is a promising candidate for a clinical use and will be tested in mammalian podocyte injury models.
Die krankhafte Fettleibigkeit (Adipositas) wird in weiten Teilen der Welt zunehmend zum bestimmenden Gesundheitsproblem. Die Datenerhebungen der Weltgesundheits-organisation (WHO) sowie der Organisation zur wirtschaftlichen Zusammenarbeit und Entwicklung (OECD) zeigen einen deutlichen Anstieg der Adipositasprävalenz über die letzten Jahrzehnte. In vielen OECD Ländern gilt heute über die Hälfte der Bevölkerung als übergewichtig oder adipös (WHO: Website der WHO, zuletzt geprüft am 02.09.2017; OECD: Fettleibigkeit und Übergewicht nehmen in den OECD-Ländern weiter zu, zuletzt geprüft am 02.09.2017). Dies wird zur immer größeren Belastung für das Gesundheitssystem, da Adipositas mit vielen Sekundärkrankheiten wie Herz-Kreislauferkrankungen, Bluthochdruck und bestimmten Krebsarten assoziiert wird (Bray 2004; Després et al. 2001; Malnick und Knobler 2006). Für das Jahr 2003 wurde für das deutsche Gesundheitssystem dadurch ein finanzieller Aufwand in Höhe von 11 Milliarden Euro für die Behandlung von Adipositas oder durch Adipositas verursachte Komorbiditäten veranschlagt (Knoll 2010). Hinzu kommen „emotionale Kosten“ der Betroffenen, die unter sozialer Ausgrenzung und Stigmatisierung leiden (Latner und Stunkard 2003; Neumark-Sztainer et al. 1998; Sobal et al. 1995; Brewis et al. 2011; Brewis 2014).
Neben diesen klar Adipositas-assoziierten gesundheitlichen Beeinträchtigungen hat es immer wieder Untersuchungen zu einem möglichen Zusammenhang von Adipositas und Kognition gegeben. Dieser wurde in vielen Studien am Menschen untersucht und die bisherigen Ergebnisse sehr anschaulich von Anna Dahl und Linda Hassing 2013 beziehungsweise Christina Prickett und Kollegen 2015 analysiert (Dahl und Hassing 2013; Prickett et al. 2015). Diese Übersichtsarbeiten zeigen auf, dass es durchaus Belege für einen Zusammenhang von Adipositas und Kognition gibt, allerdings ist die Datenlage zu diesem Thema durchaus ambivalent.
In dieser Arbeit sollte deshalb der Einfluss von Adipositas auf die Kognition mithilfe eines etablierten Mausmodells für Adipositas untersucht werden. Zu diesem Zweck wurden adulte, vier bis sechs Monate alte, Leptin-defiziente Mäuse (ob) und deren Wildtypkontrollen (wt) vergleichend untersucht. Unsere Daten zeigen, dass Adipositas im Mausmodell nicht mit einer kognitiven Beeinträchtigung einher geht. Sowohl im Verhaltensexperiment (hippocampusabhängiges Lernen, Morris water maze) als auch auf zellulärer Ebene in der Verbindungsdichte der Nervenzellen untereinander (Dichte dendritischer Dornen) zeigten sich zwischen Leptin-defizienten und Wildtyptieren keine signifikanten Unterschiede.
Allerdings wiesen Leptin-defiziente Tiere ein kleineres Hirnvolumen als Wildtypkontrolltiere auf, ein Ergebnis, das mit anderen Publikationen übereinstimmt (Ahima et al. 1999; Steppan und Swick 1999). Detaillierte Analysen der Volumenverhältnisse im Gehirn von Leptin-defizienten und Wildtypmäusen in dieser Arbeit ergaben, dass sich die relativen Größenverhältnisse im Gehirn von ob‑Tieren zugunsten des Hippocampus verschieben. Diese Ergebnisse widersprechen damit Befunden in adipösen Menschen, die kleinere Hippocampusvolumina aufwiesen (Isaac et al. 2011).
Die adulte hippocampale Neurogenese selbst, also die Bildung neuer, funktionaler Neuronen im adulten Gehirn, war im Gyrus dentatus von Leptin-defizienten Mäusen signifikant vermindert. Zusammen mit den Analysen von Proliferation und Apoptose von Hirnzellen im Gyrus dentatus, konnte diese eingeschränkt Neurogenese auf eine geringere Proliferation neuronaler Vorläuferzellen zurückgeführt werden. Die Überlebens-wahrscheinlichkeit schien dabei nicht beeinflusst, da keine erhöhte Apoptose im Gyrus dentatus ermittelt werden konnte.
Die hier durchgeführten Experimente konnten keine direkte, negative Auswirkung von Adipositas auf Kognition im Mausmodell belegen. Wenngleich ein Einfluss auf Aspekte der neuronalen Plastizität durch eine verminderte adulte Neurogenese sowie das Gehirngesamtvolumen bestätigt werden konnte, waren Veränderungen des Verhaltens der ob‑Tiere unter Berücksichtigung ihrer motorischen Defizite nicht nachweisbar.
Heutige Vertreter der Insekten haben vielfältige Lebensweisen und Verhaltensstrategien entwickelt, wie beispielsweise zur Ernährung, zum Schutz gegen Fressfeinde, zu Reproduktionsstrategien und die Investition in Nachkommen. Um die Evolution dieser Strategien besser zu verstehen, kann die Einbeziehung von Fossilien wertvolle Hinweise liefern. So können fossile Überreste von Organismen oder Strukturen, welche von ihnen zu Lebzeiten verursacht wurden, für eine Rekonstruktion über das erstmalig zeitgeschichtliche Auftreten und der Entwicklung einer Strategie genutzt werden. Da jedoch die Untersuchung des Verhaltens von heute nicht mehr lebenden Organismen nicht möglich ist, können Hinweise dazu nur indirekt geschlussfolgert werden. Im Rahmen dieser Arbeit wurden daher folgende Aspekte näher beleuchtet und für Rekonstruktionen genutzt: (1) Die phylogenetische Position von fossilen Vertreten, (2) Spurenfossilien, (3) Gemeinsame Fossilisation mehrerer Individuen, (4) “Frozen Behaviour“, (5) Fossilisierte Eier und Ei-assoziierte Strukturen, sowie (6) Morphologische Anpassungen als Schwerpunkt der vorliegenden Arbeit. Die Anwendbarkeit und Limitationen der jeweiligen Ansätze wurden im Rahmen von Rekonstruktionen zu Aspekten von Raubverhalten und Reproduktionsstrategien (im Zusammenhang mit der Investition in die Nachkommen) von verschiedenen Vertretern der Arthropoden diskutiert.
Die Insektengruppe Dictyoptera, welche die Gruppen Mantodea und Blattodea umfasst, hat sich als besonders geeignet für die Rekonstruktion von Verhaltensaspekten unter den genannten Aspekten und Ansätzen gezeigt. Heutige Dictyopteren zeigen eine enorme Spannbreite von verschiedenen Lebensweisen, von räuberisch und solitär lebend bei Mantiden, über verschiedene Abstufungen von Sozialverhalten bei Schaben, bis hin zur Eusozialität der Termiten (als Innengruppe der Blattodea). Des Weiteren ist diese Gruppe durch eine bemerkenswerte Autapomorphie gekennzeichnet, die Ablage von Eiern in einer Art kompakten Paket (Oothek). Die Ootheken von Dictyopteren sind sehr robust und wurden, wenn auch selten, fossil gefunden. Die Rekonstruktion des Ursprungs der Fähigkeit,
Ootheken zu bilden, stellt ein Schlüsselmerkmal in der Rekonstruktion der evolutionären Entwicklung der gesamten Gruppe dar. Weitere Betrachtungen im Rahmen dieser Arbeit beleuchten die Entwicklung der Gruppe der Mantiden und deren Spezialisierung auf eine räuberische Lebensweise, wie sie bei heutigen Vertretern zu beobachten ist.
Climate change threatens marine ecosystems by simultaneous alterations and fluctuations in several abiotic factors like temperature, salinity and pH. Therefore, a strong ability to cope with varying environmental factors is indispensable for marine organisms. Especially, larvae of meroplanktonic species will be affected by predicted alterations in environmental conditions as planktonic larval stages are considered the most sensitive stages during life history (Anger 2001).
The European shore crab Carcinus maenas, as an ecological key species, was chosen as a model species to investigate multiple stressor effects on early life history stages of marine meroplanktonic invertebrates. The life cycle of C. maenas is biphasic consisting of five pelagic larval stages (four zoeal and one megalopal stage), followed by benthic juvenile and adult phases. The metamorphic molt from the last zoeal stage to the semi-benthic Megalopa includes dramatic changes in ecology, habitat, behavior, feeding, morphology, and physiology. During life history, zoeal stages of C. maenas are of particular interest in the course of climate change as these stages are more vulnerable than the following developmental stages to alterations in abiotic factors.
The aim of the present thesis was to develop an integrative view on effects of long-term exposure, from hatching to metamorphosis, to increased temperature and hypo-osmotic conditions on early life history stages of C. maenas. We wanted to gain insights into larval responses to climate driven environmental variables, more specifically, on how tolerance to low salinity is affected by increased temperatures.
Consequently, the present study investigated the effect of long-term exposure to twelve different sub-lethal temperature and salinity combinations in an ecological relevant range on larval development of C. maenas. In a multidisciplinary approach, larval responses in performance (survival and developmental duration) and morphology were measured. Furthermore, analysis on larval ontogeny and organogenesis created the foundation for analysis of larval response to multiple stressors in anatomy.
Results of the present thesis demonstrated that despite their different life-styles and external morphology, brachyuran larvae are smaller versions of their adults when regarding their inner organization: the adult bauplan unfolds from organ anlagen compressed into miniature organisms. In addition, they provide an overall picture of seemingly gradual organogenesis across larval development and the metamorphic molt, an insight that contrasts with the abrupt external morphological changes during metamorphosis. Gradual anatomical changes in e.g. osmoregulatory structures like gills and antennal glands allowed for ontogenetic shifts of tolerance to temperature and salinity during zoeal development and successive increase in osmo- and thermoregulatory capability. On the other hand, osmoregulatory structures as seen for adults were underdeveloped during zoeal development and therefore do not qualify for osmoregulatory function for these stages. This potentially explains the higher sensitivity of zoeae to hypo-osmotic conditions.
Early life history stages of C. maenas were affected on all response levels by the tested multiple stressors. The interaction of temperature and salinity was of antagonistic type, resulting in general reduced stress for larval stages. Nevertheless, low salinity had a strong negative impact on survival, while increased temperature caused ann acceleration of development. Furthermore, the size of zoeae of C. maenas was driven by the interaction of temperature and salinity, with extreme conditions, causing diminished growth, thus resulting in smaller larval size. On the other hand, larval shape was only slightly affected by changes of abiotic factors. Volume of the digestive gland and the heart of larvae from long-term exposure to sub-lethal temperatures and salinities showed high variability.
Larval responses were affected by the stressors intensities: moderately high temperatures lessened the negative effects of low salinities, while extreme high temperatures exceeded the ameliorating effect of temperature on stressful salinity conditions. On the other hand, the tolerance to temperature and salinity increased during larval development indicating an ontogenetic shift in response to multiple stressors with development. In addition, performance, morphology, and multiple stressor interaction showed intrapopulation variability among larvae hatched from different females, and between experimental periods.
In conclusion, this study highlighted direct effects of abiotic factors on all investigated response levels in early life history stages of the meroplanktonic larvae of the invertebrate C. maenas. High mortality rates combined with higher sensitivity confirm that planktonic early life history stages are the bottleneck during life history of this species. Nevertheless, early life history stages of C. maenas had the ability to cope with wide ranges of changing environmental factors. The antagonism between temperature and salinity on larval development offers potential for early life history stages to persist in a changing world. Furthermore, anatomical structures allow for slight eurytolerance and potentially for compensation of abiotic stress. Overall, slight increases in temperature, driven by climate change may enable larvae of C. maenas to tolerate exposure to moderately low salinities and, combinedwith intrapopulation variability, potentially allows for population persistence. Summarized, this study emphasizes the importance of testing a wide range of ecologically relevant traits in developing pelagic larvae in order to properly characterize their response to environmental change.
Changes in abundance and phenology of planktonic larvae like the zoeae of C. maenas have major potential to change a species‘ population structure significantly, and furthermore indirectly affect whole community and ecosystem structures. Therefore, this thesis may serve as a bridge to future studies in evolutionary and ecological developmental biology.
The skull is an extremely informative part of the vertebrate body. Skulls are
involved to hunt, feed and drink, to nurse, fight, dig, and to many other activities.
Also, main sensory organs are situated on the head in order to enable a given
animal to see, smell, taste, feel, listen, equilibrate and think; hence, the head is the
main connection to the external world. It follows that a skull, with and without soft
tissue, can tell a lot about its owner. Each skull consists of many individual bones
constituting regions (e.g., snout and braincase) that represent different aspects of an
anatomical mosaic, which in turn allows deeper (palaeo)biological insights.
In the past three centuries, palaeontologists dug out countless fossils from all
over the world and from many preserved periods and groups, including dinosaurs.
Hence, public and private collections house numerous fossil skull specimens. To
further enlighten our understanding of palaeoecological, physiological and
phylogenetic affinities of dinosaurian representatives belonging to different groups,
and in order to reveal new aspects on their (neuro)anatomy, behaviour, ontogeny
and evolution, a thoroughly examination with modern techniques is the aim of this
thesis.
In order to get a phylogenetically broad understanding, fossil remains from at
least four extinct species, including Irritator challengeri (a theropod: mostly bipedal
carnivores) from the Early Cretaceous of northeastern Brazil, Europasaurus holgeri
(a sauropod: long-necked, quadrupedal herbivores) from the Late Jurassic of Lower
Saxony, Emausaurus ernsti together with an unnamed taxon from the Early Jurassic
of Mecklenburg-Western Pomerania, and Struthiosaurus austriacus, Late
Cretaceous of eastern Austria (the latter three are thyreophorans: armoured, mostly
quadrupedal herbivores), were in closer focus. To document and digitally reconstruct
cranial bones and cavities therein, the material was examined with micro computed
tomography (microCT). On this basis, the full morphology of the preserved anatomy
was revealed, described and contextualized, for example, in conjunction with
comparative anatomy and biomechanical considerations. During this process, further
methods were used to investigate and depict individual fossils: macro- and microphotography,
photogrammetry and phylogenetic analyses, each encompassing
multiple sub-tasks and being supported by 3D prints.
As part of the result, it was possible to formulate reasoned assumptions about
the lifestyle of the taxa in focus. For instance, the neuroanatomy and the osteological
characteristics of the spinosaurid Irritator challengeri implicate that this taxon was an
agile hunter with a habitually inclined snout that was specialized in catching relatively
small prey with a robust dentition and a comparably weak - but fast - bite, with a
remarkable jaw mechanism which enabled the animal to kinetically widen the
pharynx during lower jaw depression. The (neuro)anatomy of I. challengeri, S.
austriacus, E. ernsti and E. holgeri presented here, enrich our knowledge about a
plethora of (lifestyle-related) aspects of these animals, their closer relatives and the
prehistoric world they lived in.
Under the influence of human activities, increased climate variability induces changes in
multiple marine environments. Especially vulnerable are the coastal ecosystems where organisms
must cope with constant extreme changes of environmental drivers, such as temperature, salinity, pH,
and oxygen content. In coastal areas, brachyuran crabs are important animals that have a high impact
on ecosystem functioning and serve as a link in food webs and pelagic-benthic coupling. Larval stages
of crabs are crucial for population persistence and dispersal. They are generally more vulnerable to
changes of environmental drivers and failure to adapt to new conditions may result in population
collapse. To analyse the effects of multiple environmental drivers on larval performance and to
elucidate interspecific and intraspecific difference, this project examined larval performance in the
European shore crab Carcinus maenas. In this study, larvae of C. maenas from three native
populations (Cádiz: Cádiz Bay, Helgoland: North Sea, Kerteminde: Baltic Sea) were reared in a
factorial design consisting of different temperature (15-24 °C) and salinity treatments (20, 25, 32.5
PSU). Results demonstrated how descriptors of larval performance (growth, physiological, and
developmental rates, and survival) were affected by combined environmental drivers. Larval
responses to temperature and salinity showed contrasting patterns and differed among native
populations originating from distant or contrasting habitats, as well as within the populations. The
highest overall performance was recorded in the Cádiz population, while the Kerteminde population
had the lowest performance in most of tested traits. The interactive effects of multiple drivers differed
among the populations. In the Cádiz and Helgoland populations, higher temperatures mitigated the
effect of lower salinity while the Kerteminde population showed a maladaptive response when
exposed to lower salinity. Differences in performance showed better locally adapted populations (e.g.
Cádiz) that could acclimate faster, have better adaptive mechanisms or stronger dispersive abilities.
Because of their wider tolerance to increased temperature and decreased salinity, interactive effects
in particular populations may favour some populations in a changing climate, especially in coastal
habitats. Variation in larval performance showed complex interactions in larval performance and
highlighted the necessity to quantify inter-population responses to climate-driven environmental
change where responses of species should not be generalised. This study emphasizes the need for
inclusion of multiple traits, drivers, and populations in experimental studies to properly characterize
performance of marine coastal animals.
Insects have a long evolutionary history, as they have existed at least since Carboniferous (ca. 360 mya or million years ago) and potentially even since the Devonian (ca. 410 mya). Today they can be found in almost every habitat on earth and have thusly a very wide array of ecological strategies. To better understand their ecological strategies, especially predatory and defensive strategies, and their evolutionary history, it is crucial to also study fossil insects, as they can give a unique insight into the types of ecological strategies that were present in the past, some of which may still be found exhibited by insects today, but some of which are not. There are four approaches which are especially relevant in studying predatory and defensive strategies of insects in the fossil record: 1) specialised morphology, 2) phylogenetic position, 3) trace fossils and 4) group fossilisation and ‘frozen behaviour’.
Specialised morphology pertaining to a predatory lifestyle, especially in insects (but also arthropods as a whole), usually involves raptorial appendages, with which they can grasp their prey, and/or additionally venom injecting structures. In animals employing a defensive strategy, their morphology may be specialised in either aiding them in escaping their predator, e.g. with jumping, or in actively or passively defending against their predators, e.g. with defensive hairs. Their are also specialised morphologies that aid both predators and defensive insects, especially ones pertaining to camouflage and mimicry, as these strategies aim to send a false signal to either their predator or prey to not be recognized and/or detected by them and thus either more easily escape their predators (in the case of defensive insects) or catch their prey more easily (in the case of predators).
The phylogenetic position of a fossil insect can help in combination with a comparison with extant representatives of the group it belongs within to point out general trends in their lifestyles. But this approach is best used in combination with the other approaches.
Trace fossils, and related phenomena, that pertain to predatory and defensive life strategies, are traces of injuries (e.g. potential predation events), coprolites (fossilised excrements) and fossilised re-gurgitate (“Speiballen”) (both of which can contain prey items and a producer, i.e. the predator, may potentially be ascertained) and fossilised stomach content (where usually both the predator and the prey item is preserved).
Group fossilisations are fossils that contain groups of organisms, and can also be a predator and its prey (where its either a group of prey organisms, or also predators). Frozen behaviour are fossils where the organism is fossilised while exhibiting any type of behaviour (‘frozen in time’). This can be one organism, but also the interaction of two or more organisms, and in this later case this may also pertain to a predator-prey interaction thusly ‘caught’ and fossilised.
In this thesis the above mentioned approaches in studying predatory and defensive strategies of insects in the fossil record are discussed in the context of various insect in-groups, as exemplary cases illustrating different aspects of one or more of these approaches, and the applicability and limitations of these approaches are critically discussed.