Refine
Document Type
- Doctoral Thesis (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- Abbau (1)
- Antimikrobielle Aktivität (1)
- Biochemie (1)
- Chemische Analyse (1)
- Enzym (1)
- Enzymatic Degradation (1)
- Enzyme Engineering (1)
- Glucane <beta-1,3-> (1)
- Instrumentelle Analytik (1)
- Kultivierung (1)
Institute
This work investigated the enzymatic degradation of polyethylene terephthalate (PET) (ArticlesI and II) and polyvinyl alcohol (PVA) (Article III). Physical or chemical degradation of plastic polymers is often performed under extreme conditions like high temperatures or pressure. In comparison to that, recycling of plastics with enzymes can be carried out at ambient temperatures and neutral pH. Enzymes themselves are non- toxic, environmentally friendly, and have been used successfully in a variety of industrial processes.
Enzymatic degradation of polyesters is well studied. Their heteroatomic backbone, which is connecting monomers via ester bonds offers a target for an enzymatic attack. Especially PET, one of the most common polyesters, has been in the focus of research. The first enzyme capable of degrading the polymer was found in 2005. Since then, researchers discovered several enzymes with similar functions and subjected them to enzyme engineering. Improving the enzyme's substrate affinity, activity, and stability aims at making PET recycling more efficient. Article I provides an overview of limitations that enzymatic PET recycling is still facing and the research carried out to overcome them. More precisely, enzyme−substrate interactions, thermostability, catalytic efficiency, and inhibition caused by oligomeric degradation intermediates are summarized and discussed in detail.
Article II further addresses one of the above-mentioned limitations, namely product inhibition of PET hydrolyzing enzymes. We elucidated the crystal structure of TfCa, a carboxylesterase from Thermobifida fusca (T. fusca), and applied semi-rational enzyme engineering. The article discusses the structure-function relationship of TfCa based on the apo-structure as well as ligand-soaked structures. Furthermore, it compares the structures of TfCa and MHETase, another PET hydrolase helper enzyme. Lastly, we determined the substrate profile of the carboxylesterase based on terephthalate-based oligo-esters of various lengths and one ortho-phthalate ester. In a dual enzyme system, TfCa degraded intermediate products derived from the PET hydrolysis of a variant of PETase hydrolase from Ideonella sakaiensis (I. sakaiensis). The dual enzyme system utilized PET more efficiently in comparison to solely PETase due to relieved product inhibition. Since TfCa successfully degraded oligomeric intermediates, the reaction not only released terephthalic acid as the sole product but also increased the overall product yield.
While PET contains an ester bond that can be attacked and hydrolyzed by esterases or lipases, PVA consists of a homoatomic C-C-backbone with repeating 1,3-diol units. The polymer is water soluble with remarkable physical properties such as thermostability and viscosity. PVA is often described as biodegradable, but microbial degradation is slow and frequently involves cost-intensive cofactors. In this study, we present an improved PVA polymer with derivatized side chains and an enzyme cascade that can degrade not only modified but also unmodified PVA in a one-pot reaction. The enzyme cascade consists of a lipase, an alcohol dehydrogenase (ADH), and a Baeyer-Villiger monooxygenase (BVMO). In comparison to the scarcely published research on PVA degradation with free enzyme, this cascade is not only independent from the frequently required cofactor pyrroloquinoline quinone (PQQ) but, in principle, contains an in vitro cofactor recycling mechanism.
Eukaryotische Mikroalgen werden seit einigen Jahrzehnten hinsichtlich ihrer Eignung als Wirkstoffproduzenten intensiv untersucht, wobei bisher nur wenige potentiell nutzbare Verbindungen identifiziert wurden. Trotzdem lässt alleine die riesige Artenvielfalt die Vermutung zu, dass es Produzenten interessanter Sekundärstoffe geben muss. In den letzten Jahren zeigte sich außerdem, dass Mikroalgen Lieferanten von Wertstoffen, beispielsweise im Bereich der regenerativen Energien, sein können. Hier sind vor allem die hohen Kultivierungskosten und die geringe Produktausbeute noch zu überwindende Hürden.
Im Rahmen dieser Arbeit wurden 70 eukaryotische Mikroalgenstämme auf ihre Eignung als Produzenten neuartiger Wirk- und Wertstoffe untersucht. Außerdem wurde durch Variation der Kultivierungsbedingungen ermittelt, ob die Kultivierungskosten gesenkt und die Ausbeuten an relevanten Produkten aus Mikroalgen gesteigert werden können. Die untersuchten Mikroalgen stammten aus der Stammsammlung der Pharmazeutischen Biologie der Universität Greifswald, aus kommerziellen Stammsammlungen oder wurden aus Gewässerproben der Greifswalder Umgebung isoliert. Neue Isolate wurden mit molekulargenetischen Methoden identifiziert. Alle Mikroalgen wurden zunächst unter Standardbedingungen kultiviert, die Biomasse-Raum-Zeit-Ausbeute bestimmt und bewertet. Anschließend wurde die biochemische Zusammensetzung der Biomasse analysiert. Dazu wurden im Rahmen der Arbeit sechs Methoden zur Gesamtlipid-, Gesamtkohlenhydrat- und Gesamtproteingehaltsbestimmung sowie zur Analytik der Lipid- und Kohlenhydratzusammensetzung etabliert.
Die Algen zeigten bei Kultivierung unter Standardbedingungen Biomasseausbeuten bis 90 mg L-1 d-1. Die höchsten Wachstumsraten erreichten verschiedene Scenedesmus spp. Die biochemische Zusammensetzung der Algenbiomasse war sehr variabel. Häufig war jedoch der Proteinanteil mit ca. 50 % am höchsten, gefolgt von Kohlenhydraten mit etwa 30 % und einem Lipidanteil von ca. 10 %. Anhand der Modellalge Scenedesmus obtusiusculus konnte gezeigt werden, dass die Biomassezusammensetzung durch Variation der Kultivierungsbedingungen beeinflusst werden kann. So führten erhöhte Beleuchtung sowie Nitrat- und Eisenmangel zu vermehrter Lipid- und Kohlenhydratakkumulation. Basierend auf diesen Erkenntnissen wurde ein neues Kulturmedium entwickelt, in dem die Modellalge lipid- und kohlenhydratreiche Biomasse ohne Wachstumseinbußen im Vergleich zum Standardmedium produziert. Durch Verwendung natürlicher Wasserquellen als Basis für das Kulturmedium konnten darüber hinaus die Kultivierungskosten deutlich reduziert werden. Durch die gleichzeitige Steigerung der Produktausbeute und Senkung der Kultivierungskosten konnte gezeigt werden, dass auch eine großtechnische Produktion von Wertstoffen aus Mikroalgen wirtschaftlich sein kann.
Zur Bewertung des Potenzials der Mikroalgen als Produzenten von interessanten Sekundärstoffen wurde beispielhaft die antimikrobielle Aktivität von Extrakten der Algenbiomasse untersucht. Es zeigte sich, dass vor allem lipophile Extrakte gegen grampositive Bakterien wirksam waren, wofür wahrscheinlich die in den Extrakten nachgewiesenen mehrfach ungesättigten FS verantwortlich sind. Einige Mikroalgenarten wiesen zudem einen hohen Betaglucangehalt auf. Diesen Polysacchariden werden, wenn bestimmte Strukturvoraussetzungen erfüllt sind, diverse gesundheitsfördernde Effekte zugeschrieben. Durch Optimierung der Kultivierungsbedingungen konnten bei einigen Algenarten mit einem Gehalt von bis zu 35 % deutlich höhere Werte im Vergleich mit anderen betaglucanreichen Lebensmitteln wie Getreide (bis 10 %) oder Pilzen (bis 25 %) erreicht werden. Damit konnte gezeigt werden, dass Mikroalgen neben ihrer Eignung als Wertstoffproduzenten auch interessante Wirkstoffe liefern können.