Refine
Document Type
- Doctoral Thesis (22)
Has Fulltext
- yes (22)
Is part of the Bibliography
- no (22)
Keywords
- Virologie (4)
- Apoptosis (3)
- Aviäre Influenza (3)
- Proteomanalyse (3)
- ASFV (2)
- Afrikanische Schweinepest (2)
- Apoptose (2)
- Arenaviren (2)
- Arenavirus (2)
- Herpesviren (2)
Infectious diseases remain a significant threat to the wellbeing of humans and animals
worldwide. Thus, infectious disease outbreaks should be investigated to understand the
emergence of these pathogens, leading to prevention and mitigation strategies for future
outbreaks. High-throughput sequencing (HTS) and bioinformatic analysis tools are reshaping
the surveillance of viral infectious diseases through genome-based outbreak investigations. In
particular, analyzing generic HTS datasets using a metagenomic analysis pipeline enable
simultaneous identification, characterization, and discovery of pathogens.
In this thesis, generic HTS datasets derived from the 2018-19 WNV epidemic and USUV
epizooty in Germany were evaluated using a unified pipeline for outbreak investigation and an
early warning system (EWS). This pipeline obtained 34 West Nile virus (WNV) whole-genome
sequences and detected several sequences of Usutu virus (USUV) and other potential
pathogens. A few WNV and USUV genome sequences were completed using targeted HTS
approaches. Phylogenetic and phylogeographic inferences, reconstructed using WNV wholegenome sequences, revealed that Germany experienced at least six WNV introduction events.
The majority of WNV German variants clustered into the so-called “Eastern German clade
(EGC),” consisting of variants derived from birds, mosquitoes, a horse, and human cases. The
progenitors of the EGC subclade probably circulated within Eastern Europe around 2011. These
flavivirus genome sequences also provided substantial evidence for the first reported cases of
WNV and USUV co-infection in birds. Phylogenetic inferences of USUV genome sequences
showed the further spread of the USUV lineage Africa 3 and might indicate the overwintering
of the USUV lineage Europe 2 in Germany. Among viral sequences reported in the EWS, Hedwig
virus (HEDV; a novel peribunyavirus) and Umatilla virus (UMAV; detected in Europe for the
first time) were investigated using genome characterization, molecular-based screening, and
virus cultivation since these viruses were suspected of causing co-infections in WNV-infected
birds. The EWS detected overall 8 HEDV-positive and 15 UMAV-positive birds in small sets of
samples, and UMAV could be propagated in a mosquito cell culture Future studies are necessary
to investigate the pathogenicity of these viruses and their role in the health of wild and captive
birds.
In conclusion, this study provided a proof-of-concept that the developed unified and
generic pipeline is an effective tool for outbreak investigation and pathogen discovery using the
same generic HTS datasets derived from outbreak and surveillance samples. Therefore, this
thesis recommends incorporating the unified pipeline in the key response to viral outbreaks to
enhance outbreak preparedness and response.
Herpesviruses are enveloped DNA viruses which are dependent on two fusion steps for efficient replication in the host cell. First, they have to fuse their envelope with the cellular plasma membrane or with the vesicle membrane after endocytic uptake to enter the host cell and second, they have to export the newly generated nucleocapsids from the site of assembly to the cytoplasm by fusion of the primary virion envelope with the outer nuclear membrane (ONM). The main goal of this project was to provide a better understanding of how herpesvirus capsids exit the nucleus. On the one hand this thesis aimed at finding cellular proteins involved in nuclear egress (Paper I), while on the other the focus was on further characterization of the viral nuclear egress complex (NEC, Paper II) and its interaction with the capsid (Paper III).
It is the hallmark of viruses, including herpesviruses, to hijack host cell proteins for their efficient replication. Some of those interactions are well characterized, while others might not yet have been discovered. In the last step of the nuclear egress, where the primary virion membrane fuses with the ONM, most likely a cellular machinery is involved. The presented work focused on Torsin, the only known AAA+ ATPase localizing in the endoplasmic reticulum and the perinuclear space (PNS). For this, the effect of overexpression of WT and mutant proteins, as well as CRISPR/Cas9 generated knock-out cell lines, on PrV replication was analyzed. Neither single overexpression nor single knockouts of TorA or TorB had any significant effects on virus titers. However, infection of TorA/B double knockout cells revealed reduced viral titers and an accumulation of primary virions in the PNS at early infection times, indicating a delay in nuclear egress.
The process of nuclear egress has been intensively investigated without revealing all its details. To address some of the missing aspects we generated monoclonal antibodies (mAbs) against the NEC and its components (pUL31 and pUL34) for a better visualization of the process in transfected as well as infected cells. These mAbs provide a useful tool for future analyses.
The publication of the NEC crystal structure formed the basis for intensive research on the molecular details of the NEC formation and its interaction with the nucleocapsid. Recently, our lab showed that lysine (K) at position 242 in the membrane-distal part of pUL31 is crucial for incorporation of the nucleocapsid into budding vesicles. Replacing K by alanine (A) resulted in accumulations of vesicles in the PNS, while mature capsids were not incorporated. To test whether this is due to electrostatic interference or structural restrictions we substituted K242 by different aa to determine the requirements for nucleocapsid uptake into the nascent primary particles. To analyze whether the defect of pUL31-K242A can be compensated by second-site mutations, PrV-UL31-K242A was passaged and mutations in revertants were analyzed. Different mutations have been identified compensating for the K242A defect. A considerable number of mutations indicates that the NEC is much more flexible than previously thought. Further, we gained information that the K at position 242 is not directly involved in capsid interaction, while it is more likely involved in rearrangements within the NEC coat.
Wie andere Vertreter der Paramyxoviridae vergrößert das NDV durch Editierung von Transkripten seine Kodierungskapazität. Durch co-transkriptionelle mRNA-Editierung kodiert das P-Gen beim NDV sowohl für das P-, das V-, als auch das W-Protein. Die drei Proteine gleichen sich N-terminal, wohingegen die C-Termini in Länge und AS-Zusammensetzung variieren. Während sowohl Expression als auch Inkorporation des P- und V-Proteins in das NDV-Partikel nachgewiesen wurde, gab es bisher keinen Beweis für die Existenz des W-Proteins.
Für den Nachweis der Expression des NDV W-Proteins wurden W-spezifische Seren auf Grundlage von Peptiden generiert, welche im spezifischen C-Terminus lokalisiert waren und vorhersagbare antigene Regionen beinhalteten. Je eines der Kaninchenseren ermöglichte die Detektion von Plasmid-exprimiertem NDV W-Protein, sowie W-Protein in infizierten Zellen mittels indirekter IF und WB-Analyse.
Eine Inkorporation des W-Proteins in NDV-Virionen deuteten WB- und massen-spektrometrische Analysen an, während die Abwesenheit des Proteins für rekombinante NDV deren W-Protein Expression durch unterschiedliche Mutations-ansätze unterbunden wurde, in infizierten Zellen und Viruspartikeln bestätigt werden konnte.
Untersuchungen infizierter Zellen mit Hilfe konfokaler Mikroskopie zeigten eine Akkumulation des W-Proteins im Zellkern. Diese Lokalisation wurde auf eine zweigliedrige NLS im spezifischen C-Terminus zurückgeführt und die Funktionalität der NLS anhand der zytoplasmatischen Verteilung des Proteins in transfizierten bzw. infizierten Zellen nach Mutation der zwei basischen Cluster bestätigt.
Vergleichende Untersuchungen rekombinanter und WT-NDV zeigten keinen Einfluss der NLS bzw. der Expression des W-Proteins auf die Virusreplikation in vitro.
Bei der Analyse wirtsspezifischer, IFN-antagonistischer Funktionen des NDV W-Proteins in der späten Phase der Typ-I-IFN-Antwort mit Hilfe eines Hühnerzell-basierten IFN signaling Assays konnte sowohl für das W-Protein eines lentogenen (NDV Cl30), als auch eines velogenen NDV-Stammes (NDV Herts_I) kein inhibierender Effekt auf den untersuchten Signalweg gezeigt werden. Stattdessen deutete sich für das NDV Cl30 W-Protein ein aktivierender Effekt an.
Sequenzanalysen zur Vorhersagbarkeit von W-Proteinen bzw. C-terminal kodierten NLS in NDV-Stämme unterschiedlicher Virulenz und Genotypen ließen keinen Rückschluss auf einen Einfluss des W-Proteins auf die Pathogenität von NDV zu.
Im Gegensatz zum W-Protein war die Expression des NDV V-Proteins essentiell für die Replikation von NDV in vitro und in ovo.
Für die Analyse des Einflusses von V-Proteinen unterschiedlicher Herkunft auf die Replikation eines lentogenen NDV in vitro wurden diese in verschiedenen rekombinanten Viren von einem zusätzlich inserierten ORF exprimiert und die Expression der homo- und heterologen V-Proteine durch stammspezifische Seren überprüft, wofür im Vorfeld ein NDV R75/95 V-spezifisches Peptidserum generiert wurde. Keines dieser rekombinanten Viren zeigte Replikationsvorteile in vitro im Vergleich zum parentalen Virus.
Ein Hinweis auf einen Einfluss der Herkunft des V-Proteins konnte mit Hilfe des Hühnerzell-IFN signaling Assays erhalten werden. Während das V-Protein eines lentogenen NDV (NDV Cl30) keinen inhibierenden Effekt zeigte, deutete sich ein leicht inhibierender Effekt für das velogene NDV Herts_I V-Protein in einer Zelllinie an.
Pilotstudien zur potenziellen IFN-antagonistischen Funktion des V-Proteins wurden nach vorheriger Transfektion und Überexpression von V-Proteinen unterschiedlicher Pathotypen bzw. nach Vorbehandlung von Zellen mit Hühner-IFN-α vor Infektion durchgeführt. Die Replikation des korrespondierenden WT-Viruses bzw. rekombinanten Virus mit homo- oder heterologer V-Proteinexpression war in vitro in beiden Fällen nicht verändert.
To enable control of African swine fever (ASF) in Eastern and Southern Africa, prototype live vaccine candidates were generated by targeted gene deletions from a Kenyan genotype IX ASF virus (ASFV). It was attempted to delete known nonessential genes involved in virulence (encoding TK, dUTPase, CD2v, 9GL), possibly essential genes (p12, pA104R, ribonucleotide reductase), and genes with widely unknown functions (pK145R). Isolation of the desired virus recombinants by plaque assays or limiting dilutions on a wild boar lung cell line (WSL-HP) was facilitated by substitutive reporter gene insertions encoding fluorescent proteins (GFP, DsRed), or the human membrane protein CD4. The latter protein permitted enrichment of recombinant virus particles by magnetic activated cell sorting (MACS). The isolated ASFV recombinants were characterized by PCR and sequencing of the mutated genome parts, and replication kinetics and virus spread in cell culture were investigated. Deletion of TK, CD2v, or pK145R had no detectable effect on in vitro growth of ASFV Kenya. Interestingly, virus mutants lacking the DNA binding protein pA104R which has been considered to be essential for DNA replication, also exhibited almost wild type-like growth properties.
In contrast, ASFV mutants lacking ribonucleotide reductase or p12 could not be purified to homogeneity on WSL-HP cells, indicating these proteins are essential for virus replication in cell culture. Therefore, trans-complementing cells lines stably expressing ASFV p12 have been prepared which can now be used for mutant virus purification. If this approach is successful the resulting defective mutant ASFV Kenya-p12 might be suitable as a safe “disabled in second cycle” (DISC) live vaccine in swine.
In a novel approach to improve reverse genetics of ASFV the CRISPR/Cas9 cell line WSL-gRp30 (Hübner et al., 2018a) was co-transfected with genomic DNA of ASFV-KenyaCD2vDsRed, sgRNA plasmids targeting K145R or 9GL, and GFP-expressing recombination plasmids for homology-directed repair. For booting up of the noninfectious virus genome the cells were infected with phylogenetically distant helper virus (genotype II ASFV Armenia, 84% identity) which was selectively inhibited on the used cell line. The desired double-fluorescent double-deletion mutants could be isolated after few plaque purification steps on selective WSL-gRp30 cells. Next generation sequence (NGS) analyses of reconstituted ASFV Kenya genomes showed that no unwanted recombination with the helper virus occurred, indicating that the method might be also suitable for booting of synthetic ASFV genomes cloned and mutagenized in E. coli or yeast.
The modified CRISPR/Cas9 system of S. pyogenes might be also usable for generation of ASFV resistant pigs. To evaluate this alternative control measure WSL cell clones stably expressing Cas9 nuclease and single or multiple sgRNAs against essential ASFV proteins were prepared and tested for their susceptibility to infection. Strain specific sgRNAs targeting the p30 gene of ASFV Kenya or Armenia selectively inhibited the respective viruses, and a p12 gene-specific sgRNA abrogated replication of both genotypes almost completely. Interestingly, coexpression of four ASFV-specific sgRNAs did not enhance virus inhibition, but might help to reduce the frequency of escape mutants which were occasionally isolated from the single sgRNA-expressing cells, and exhibited silent base substitutions or in-frame deletions within the target genes. First attempts to express the in vitro tested CRISPR/Cas9 constructs in transgenic pigs are in progress.
CRISPR/Cas9 supported rescue of a defective BAC clone of pseudorabies virus (PrV) vaccine strain Bartha (Hübner et al., 2018b) was used to develop putative vectored vaccines against ASFV. In the present study expression cassettes for the codon-optimized p12 and p54 genes of ASFV were successfully inserted into the PrV genome. The insertions did not significantly affect PrV recombination in cell culture, and the transgenes were expressed at similar levels as in ASFV-infected cells. It has to be tested whether coinfection with vector constructs for these and other immunogenic ASFV proteins is able to protect pigs against a lethal challenge.
For characterization of the generated ASFV mutants and PrV vector constructs, monospecific antisera against several ASFV gene products (p11.5, p12, p54, pK145R, p285L) were prepared by immunization of rabbits with bacterial GST fusion proteins. The anti-p12 serum showed only weak and strain-specific reactions with the ASFV Kenya protein, but was nevertheless useful for identification of p12-expressing PrV recombinants and WSL cell lines. All other sera showed satisfying reactions in Western blot and mostly immunofluorescence analyses, and allowed i.a. precise localization of the pK145R and p285L proteins in ASFV-infected cells and virions (Hübner et al., 2019).
Untersuchung von Virulenzdeterminanten des Newcastle Disease Virus mit Hilfe von Virusrekombinanten
(2020)
Die Newcastle Krankheit (Newcastle Disease, ND) wird durch das aviäre Paramyxovirus-1 (APMV-1) verursacht und zählt zu den bedeutendsten Viruserkrankungen des Geflügels, wobei die Ausprägung der Krankheitssymptome sehr stark variiert. Das APMV-1 der Taube (pigeontype paramyxovirus, PPMV-1) infiziert größtenteils Brief-, Rasse-, Stadt- und Wildtauben, jedoch ist auch Wirtschaftsgeflügel für diesen Erreger empfänglich. Die Krankheit ist weltweit verbreitet und besonders die schweren Verlaufsformen, ausgelöst durch den mesogenen und den velogenen Pathogenitätstyp, führen bis heute zu hohen wirtschaftlichen Verlusten. Durch die Entwicklung des reversen genetischen Systems für das NDV ist es möglich, verschiedene Bereiche des viralen Genoms unterschiedlich pathogener NDV-Isolate auszutauschen und rekombinante Viren zu generieren, um mögliche Virulenzdeterminanten zu identifizieren. Lange Zeit galt die Aminosäuresequenz an der proteolytischen Spaltstelle des Fusionsproteins als die Virulenzdeterminante des NDV. Studien der letzten Jahre belegen aber zunehmend, dass es weitere Sequenzabschnitte im Genom gibt, die Einfluss auf die Pathogenität haben. Besonders bei den Taubenisolaten zeigte sich, dass diese trotz einer polybasischen Aminosäuresequenz an der proteolytischen Spaltstelle des F-Proteins, die typisch für meso- und velogene APMV-1 ist, mit einem ermittelten intrazerebralen Pathogenitätsindex (ICPI) < 0,7 als lentogen (niedrig virulent) einzuordnen sind.
Die Bestimmung der Gesamtsequenz des vorliegenden PPMV-1 Isolates R75/98 und die Herstellung des entsprechenden rekombinanten Virus rR75/98 waren Ziel dieser Arbeit. Nach der in vitro-Charakterisierung, die keine signifikanten Unterschiede zwischen dem Wildtyp und der Rekombinante zeigte, verdeutlichte die ICPI-Bestimmung, dass sich R75/98 und rR75/98 in ihrer Pathogenität unterschieden. Während R75/98 mit einem ICPI von 1,1 als mesogen eingestuft wurde, entsprach das rekombinante Virus rR75/98 mit einem ICPI von 0,28 dem lentogenen Pathotyp. Durch einmalige Passage der Rekombinante im Tier entstand das Reisolat RrR75/98, welches sich in seinen in vitro-Eigenschaften nicht von den beiden anderen Isolaten unterschied, aber in seiner Pathogenität (ICPI 0,93) wieder dem mesogenen Ausgansvirus R75/98 entsprach. Unter Nutzung des Next Generation Sequencing war es möglich, die Grundlagen für diese Pathogenitätsunterschiede aufzuzeigen. Während es zwischen R75/98 und rR75/98 insgesamt acht Aminosäuresubstitutionen gab (drei im F-Protein, zwei im HN-Protein und drei im L-Protein), die zu einer Verminderung der Pathogenität führten, wurden nur zwei Aminosäuremodifikationen (jeweils eine im F- und L-Protein) nachgewiesen, um die Pathogenitätssteigerung vom lentogenen rR75/98 hin zum mesogenen RrR75/98 hervorzurufen. Beide Aminosäureaustausche haben einen Effekt auf die vorhergesagte Proteinstruktur und beeinflussen vermutlich die Proteinfaltung, was wiederum eine nicht unwesentliche Auswirkung auf die biologische Aktivität des Virus haben kann. Besonders die Modifikation im F-Protein an Aminosäureposition 472 verdeutlicht, dass neben der Aminosäuresequenz an der proteolytischen Spaltstelle andere Bereiche dieses Proteins Einfluss auf die NDV-Virulenz haben.
Zur Untersuchung des Einflusses einzelner Abschnitte des F-Proteins auf die Pathogenität wurden im ursprünglich lentogenen NDV Clone 30 einzelne Sequenzbereiche durch die des mesogenen PPMV-1 R75/98 substituiert, die entsprechenden rekombinanten Viren generiert und charakterisiert. Es zeigte sich, dass sowohl die Expression als auch die Inkorporation der chimären Fusionsproteine mittels Western-Blot nachgewiesen werden konnte. Die Rekombinanten unterschieden sich weder in Größe noch in Form (Elektronenmikroskopie) und die chimären Fusionsproteine konnten an der Plasmamembran der Wirtszellen detektiert werden. Alle Rekombinanten waren in der Lage, Synzytien auszubilden und in verschiedenen Zelllinien (Wachtelmuskelzelle, Hühnerembryofibroblasten) bzw. in embryonierten Hühnereiern zu replizieren. Bei der Bestimmung des ICPIs zeigten sich jedoch Unterschiede. Zwei der sechs Rekombinanten wurden als lentogen eingestuft, die anderen vier wurden dem mesogenen Pathogenitätstyp zugeordnet. Es konnte gezeigt werden, dass neben der Interaktion der homologen F1- und F2-Untereinheit, die zytoplasmatische Domäne des Fusionsproteins einen bedeutenden Einfluss auf die Pathogenität von NDV hat. Auch für andere Vertreter der Paramyxoviren ist bekannt, dass die zytoplasmatische Domäne der beiden Oberflächenproteine F und HN mit dem M-Protein interagiert und diese Interaktion wichtig für den Zusammenbau der Viruspartikel, den Knospungsvorgang und die Freisetzung der Viren ist.
Neben dem Fusionsprotein existieren zusätzlich Virulenzdeterminanten in den weiteren NDV-Proteinen. Während es bereits Untersuchungen zum Einfluss auf die Pathogenität für die Proteine NP, P, V, M, F, HN und L gibt, war es noch nicht möglich, eine Aussage zum W-Protein zu treffen, da der Nachweis dieses Proteins bis dato nicht erfolgte. Zunächst wurde für unterschiedlich pathogene NDV der Bereich der P-Gen-Editierungsstelle amplifiziert, gefolgt von einer Tiefensequenzierung, um zusätzlich zur P- und V-mRNA auch die W-mRNA nachzuweisen und deren mengenmäßigen Anteil zu bestimmen. Im Rahmen dieser Arbeit wurden außerdem Plasmide hergestellt, die für weiterführende Arbeiten genutzt werden konnten, in denen erstmals der Nachweis des W-Proteins für NDV gelang.
Herpesviruses are a fascinating group of enveloped DNA viruses, which rely on membrane fusion for infectious entry and direct cell-to-cell spread. Compared with many other enveloped viruses, they utilize a remarkably complex fusion machinery. Three conserved virion proteins, the bona fide fusion protein gB, and the presumably gB activating gH/gL heterodimer constitute the conserved core fusion machinery and are believed to drive membrane fusion in a cascade-like fashion. Activation of this cascade in most alphaherpesviruses is proposed to be triggered by binding of gD to specific host cell receptors. The molecular details of this fusion process, however, remain largely elusive. Yet, a detailed mechanistic knowledge of this process would be greatly beneficial for the development of efficient countermeasures against a variety of diseases. In this thesis, the functional relevance of individual components of the essential gH/gL complex of the alphaherpesvirus PrV has been assessed by two different approaches: by reversion analysis (paper II) and site-directed mutagenesis (papers III-V). In contrast to other herpesviruses, gL-deleted PrV is able to perform limited cell-to-cell spread, providing the unique opportunity to passage the entry-deficient virus in cell culture to select for PrV revertants capable of infecting cells gL-independently. This approach already resulted in an infectious gL-negative PrV mutant (PrV-ΔgLPass), in which the function of gL was compensated by formation of a gDgH hybrid protein. Here, the requirements for gL-independent infectivity of a second independent revertant (PrV-ΔgLPassB4.1), were analyzed. Sequencing of the genes encoding for gB, gH and gD, revealed mutations in each of them. By means of a robust infection-free, transfection-based cell-cell fusion assay (paper I), we identified two amino acid substitutions in the gL-binding domain I of gHB4.1 (L70P, W103R) as sufficient to compensate for lack of gL. Two mutations in gB (G672R, ΔK883) were found to enhance fusogenicity, probably by lowering the energy, required for gB refolding from pre- to postfusion conformation. Coexpression of gHB4.1 and gBB4.1 led to an excess fusion, which was completely suppressed by gDB4.1 in the fusion assays. This was surprising since PrV gD is normally not required for in vitro fusion or direct viral cell-to-cell spread, clearly separating this process from fusion during entry, for which PrV gD is essential. The fusion inhibiting effect of gDB4.1 could be attributed to a single point mutation resulting in an amino acid substitution within the ectodomain (A106V). In conclusion, these results indicated that gL is not central to the fusion process, as its function can be compensated for. As found so far, gL-independent infectivity can be realized by compensatory mutations in gH (as in PrV-ΔgLPass) or in gH plus gB (as in PrV-ΔgLPassB4.1). Excessive fusion induced by gHB4.1 and gBB4.1 was counter-regulated by gDB4.1, indicating that the interplay between these proteins is precisely regulated and further implies that gL and gD, despite being not absolutely essential for the fusion process, have important regulatory functions on gH and/or gB.
Both PrV-ΔgLPass mutants had acquired compensatory mutations in gH affecting the predicted gL-binding domain I in gH. By construction of an artificial gH32/98, which lacked the predicted gL-binding domain and was similar to the recently crystallized gH-core fragment present in the gDgH hybrid protein, we identified the N-terminal part of PrV gH as essential for gH function during fusion (paper III). gH32/98 was unable to promote fusion of wild-type gB in fusion assays and led to a total loss of function in the viral context. These results indicated that the gD moiety, present in gDgH, is critical for proper function of the gH-core fragment. We hypothesize that the gD moiety may adopt a stabilizing or modulating influence on the gH structure, which is normally executed by gL and important for interaction of gH with wild-type gB. Remarkably, substitution of wild-type gB by gBB4.1 rescued function of gH32/98 in the cellular and viral contexts. These findings suggest that gBB4.1 has been selected for interaction with “gL-less” gH. In conclusion, these results demonstrated that gL and the gL-binding domain are not strictly required for membrane fusion during virus entry and spread but that compensatory mutations must be present in gB to restore a fully functional fusion machinery. These results strongly support the notion of a functional gH-gB interaction as a prerequisite for membrane fusion.
In addition to the N-terminal domain, we identified the transmembrane domain of PrV gH as an essential component of the fusion machinery, while the cytoplasmic domain was demonstrated to play a modulatory but nonessential role (paper IV). Whereas truncation or substitution of the PrV gH TMD by a gpi-anchor or the analogous sequence from PrV gD rendered gH non-functional, the HSV-1 gH TMD was found to functionally substitute for the PrV gH TMD in cell-cell fusion and complementation assays. Since residues in the TMD which are conserved between HSV and PrV gH but absent in PrV gD, are placed on one face of an α-helical wheel plot, we hypothesize that the gH TMD has an intrinsic property to interact with membrane components such as lipids or other molecules as a requirement for promoting membrane fusion.
In a final study focusing on the function of gH, we identified the N-glycosylation sites utilized by PrV gH, and determined their individual role in viral infection (paper V). PrV gH was found to be modified by N-glycans at five potential glycosylation sites. N-glycans at PrV specific N77 and the highly conserved site N627 were found to be critical for efficient membrane fusion in the fusion assays, and during viral entry and cell-to-cell spread. N627 was further shown to be crucial for proper gH transport and maturation. In contrast, inactivation of N604, conserved in the Varicellovirus genus, enhanced in vitro fusion activity and viral cell-to-cell spread. These findings demonstrated a role of the N-glycans in proper localization and function of PrV gH.
Ebolaviruses are dependent on host cell proteins for almost all steps in their viral life cycle. While some cellular factors with crucial roles in the ebolavirus life cycle have been identified, many of them remain to be identified or fully characterised. This thesis focuses on the characterisation and identification of host cell interactions of the highly pathogenic Ebola virus (EBOV), probing host-virus interaction at various stages of the viral life cycle. Beginning with viral budding, the function of a recently proposed late domain motif within the EBOV matrix protein VP40 was examined using an EBOV transcription and replication-competent virus-like particle (trVLP) system. Although this motif has been suggested to interact with the endosomal sorting complex required for transport (ESCRT), we could show that this late domain motif does not contribute to EBOV budding.
While many host cell proteins have been identified so far that are important for viral budding, only a few proteins are known that are necessary for EBOV RNA synthesis. Thus, to identify host proteins that are involved in viral replication and transcription, we performed a genome-wide siRNA screen in the context of an EBOV minigenome assay. Using this approach, we identified several proteins that appear to be important for viral RNA synthesis or protein expression. Two of the most prominent hits in our screen were CAD (Carbamoyl-phosphate synthetase 2, aspartate transcarbamylase and dihydroorotase) and NXF1 (nuclear RNA export factor 1). CAD catalyses the first three steps in the de novo pyrimidine biosynthesis, while NXF1 is the main nuclear export protein for cellular mRNAs. In subsequent characterisation studies, using a range of life cycle modelling systems as well as molecular analyses, we could demonstrate that the canonical function of CAD during the pyrimidine biosynthesis is necessary for EBOV replication and transcription. In contrast to this, for NXF1 we discovered a so-far unknown function: Again, by applying different life cycle modelling alongside with molecular assays, we provided evidence that the EBOV nucleoprotein recruits NXF1 into inclusion bodies, the site of EBOV RNA synthesis, where it binds viral mRNAs to export them from these structures. Importantly, for both CAD and NXF1 we were able to recapitulate key data in the context of live EBOV infection, confirming their roles in the viral life cycle.
Both of these identified host factors are promising targets for antiviral therapies and indeed de novo pyrimidine synthesis is emerging as a possible antiviral target for a number of viruses. Similarly, as we could show NXF1 to be important in the life cycle of the highly pathogenic Junín virus, this raises the possibility that disruption of this interaction may result in broad-spectrum antiviral activity. Moreover, for an increasing number of negative-sense RNA viruses inclusion bodies as site of viral RNA synthesis are described to have a liquid organelle character. Therefore, our findings on NXF1 also provide an intriguing model to explain how negative-sense RNA viruses in general overcome this obstacle and export viral mRNAs from inclusion bodies.
Avian influenza viruses (AIVs) have their natural reservoir in wild aquatic birds but occasionally
spread to terrestrial poultry. While AIVs of subtypes H5 and H7 are well known to evolve highly
pathogenic avian influenza viruses (HPAIVs) during circulation in domestic birds, non-H5/H7
subtypes exhibit only a low to moderate pathogenicity. Furthermore, spillover events to a broad
range of mammalian hosts, including humans, with self-limiting to severe illness or even fatal
outcomes, were reported for non-H5/H7 AIVs and pose a pandemic risk. The evolution of high
virulent phenotypes in poultry and the adaptation of AIVs to mammalian hosts are predominantly
linked to genetic determinants in the hemagglutinin (HA). The acquisition of a polybasic cleavage
site (pCS) is a prerequisite for the evolution of HPAIVs in poultry, while changes in the receptor
binding preference and virus stability are essential for adaptation of AIVs to mammals.
In August 2012, an H4N2 virus with the pCS motif 322PEKRRTR/G329 but preserved trypsin
dependend replication and low pathogenicity in chickens was isolated on a quail farm in California.
In the first two publications, we followed different approaches to investigate virulence factors and
the potential risk for the transition of H4N2 to high virulence in chickens. The loss of N-terminal
glycosylations in the vicinity of the pCS resulted in decreased binding to avian-like receptors and
dramatically decreased virus stability. On the other hand, one deglycosylation increased virus
replication and tissue tropism in chicken embryos but did not alter virulence or excretion in
chickens. Furthermore, additional basic amino acids in the natural pCS motif improved the trypsin-independent
cleavage of HA and caused slightly increased tissue tropism in chickens. However,
the engineered motifs alone did not affect virulence in chickens. Intriguingly, they even had a
detrimental effect on virus fitness, which was restored after reassortment with segments of HPAIV
H5N1. Together, the results show the importance of HA glycosylations on the stability of H4N2 and
reveal the important role of non-HA segments in the transition of this virus to high virulence in
poultry.
The transmission of another non-H5/H7 AIV of subtype H10N7 from birds to seals resulted in mass
deaths in harbor seals in 2014 in northern Europe. The third publication describes nine mutations
in the HA1 subunit of seal isolates compared to avian H10Nx viruses. We found that some of these
mutations conferred a dual specificity for avian and mammalian receptors and altered
thermostability. Nevertheless, the H10N7seal remained more adapted to avian host cells, despite
of the alteration in the receptor binding specificity.
Altogether, this thesis demonstrates that naturally evolved AIVs beside H5 and H7 subtypes
support a highly pathogenic phenotype in the appropriate viral background and alter virulence and
host receptor specificity by few amino acid substitutions in the HA. These findings improve our
knowledge of the potential of non-H5/H7 AIVs to shift to high virulence in birds and the adaptation
in mammals.
Coding constraints imposed by the very small genome sizes of negative-strand RNA viruses (NSVs) have led to the development of numerous strategies that increase viral protein diversity, enabling the virus to both establish a productive viral replication cycle and effectively control the host antiviral response. Arenaviruses are no exception to this, and previous findings have demonstrated that the nucleoprotein (NP) of the highly pathogenic Junín virus (JUNV) exists as three additional N-terminally truncated isoforms of 53 kD (NP53kD), 47 kD (NP47kD), and 40 kD (NP40kD). The two smaller isoforms (i.e. NP47kD and NP40kD) have been characterized as products of caspase cleavage, which appears to serve a decoy function to inhibit apoptosis induction. However, whether they have additional functions in the viral replication cycle remains unknown. Further, the origin and function of NP53kD has not yet been described.
In order to first identify the mechanism responsible for production of the NP53kD variant, a possible role of additional caspase cleavage sites was first excluded using a site mutagenesis approach. Subsequently, alanine mutagenesis was then used to identify a region responsible for NP53kD production. As a result, three methionine residues were identified within the characterized sequence segment of NP, linking the production of NP53kD to an alternative in-frame translation initiation. Further site-directed mutagenesis of the previously identified putative in-frame methionine codons (i.e. M78, M80 and M100) finally led to the identification of translation initiation at M80 as being predominantly responsible for the production of NP53kD. Once the identity of all three NP isoforms was known, it was then of further interest to more deeply characterize their functional roles. Consistent with the N-terminal domain containing RNA binding and homotrimerization motifs that are relevant for the viral RNA synthesis process, it could be demonstrated that all three truncated NP isoforms lost the ability to support viral RNA synthesis in a minigenome assay. However, they also did not interfere with viral RNA synthesis by full-length NP, nor did they affect the ability of the matrix protein Z to inhibit viral RNA synthesis. Moreover, it was observed that loss of the oligomerization motifs in the N-terminus also affected the subcellular localization of all three NP isoforms, which were no longer localized in discrete perinuclear inclusion bodies, but rather showed a diffuse distribution throughout the cytoplasm, with the smallest isoform NP40kD also being able to enter the nucleus. Surprisingly, the 3'-5' exonuclease function of NP, which is associated with the C-terminal domain and plays a role in inhibiting interferon induction by digestion of double-stranded RNAs, was found to be retained only by the NP40kD isoform, despite that all three isoforms retained the associated domain. Finally, previous studies using transfected NP and chemical induction of apoptosis have suggested that cleavage of NP at the caspase motifs responsible for generating NP47kD and NP40kD plays a role in controlling activation of the apoptosis pathway. Therefore, to further characterize the connection between the generation of NP isoforms and the regulation of apoptosis in a viral context, recombinant JUNVs deficient in the respective isoforms were generated. Unlike infections with wild-type JUNV, mutations of the caspase cleavage sites resulted in the induction of caspases activation. Surprisingly, however, this was also the case for mutation of the alternate start codon responsible for NP53kD generation.
Taken together, the data from this study suggest a model whereby JUNV generates a pool of smaller NP isoforms with a predominantly cytoplasmic distribution. As a result of this altered localization, NP53kD appears to be able to serve as the substrate for further generation of NP47kD and NP40kD by caspase cleavage. Not only does this cleavage inhibit apoptosis induction during JUNV infection, it also results in a cytoplasmic isoform of NP that retains strong 3'-5' exonuclease activity (i.e. NP40kD) and thus may play an important role in preventing viral double-stranded RNA accumulation in the cytoplasm, where it can lead to activation of IFN signaling. Overall, such results emphasize the relevance of alternative protein isoforms in virus biology, and particularly in regulation of the host response to infection.
Die Afrikanische Schweinepest (ASP) ist eine Viruserkrankung, die Mitglieder der Suidae-Familie wie Buschschweine, Warzenschweine, Hausschweine und Wildschweine befällt. Das Virus wird durch direkten Kontakt zwischen infizierten und naiven Tieren, durch Zecken der Gattung Ornithodoros oder durch Kontakt mit kontaminiertem Material übertragen. Während die Krankheit bei Warzenschweinen und Buschschweinen im Allgemeinen asymptomatisch verläuft, verursacht die ASP eine hohe Mortalität bei Hausschweinen und Wildschweinen. Daher ist die jüngste Ausbreitung von ASP in Europa eine ernste Bedrohung für die Schweinehaltung in der EU. Bis heute ist keine wirksame Behandlung oder Impfung verfügbar. Und es liegen nur wenige Informationen über Virus-Wirt-Wechselwirkungen vor, die als Grundlage für die Etablierung antiviraler Strategien verwendet werden könnten.
Das Virus der afrikanischen Schweinepest (African swine fever virus, ASFV) ist der einzige bekannte Vertreter der Familie der Asfarviridae. Das DNA-Genom des ASFV kodiert für über 150 Gene. Über die Expressionsprodukte ist wenig bekannt, nur wenige virale Proteine sind bisher funktionell charakterisiert. Die Morphogenese von ASFV ist sehr komplex. So entstehen neben den zweifach umhüllten reifen extrazellulären Virionen auch einfach umhüllte intrazelluläre Partikel, die die die Präparation reiner extrazellulären Virionen erschweren.
In früheren in vitro Studien wurde die Zusammensetzung der extrazellulären Viruspartikel mittels 2D-Gelelektrophorese analysiert. Die Reinigung erfolgte über ein im Jahre 1985 veröffentlichtes Reinigungsprotokoll, welches auf einer Percolldichtegradientenzentrifugation und einer Gelchromatographie basierte. Das Protokoll wurde für die Reinigung des auf Vero-zellen adaptierten Virusstamm Ba-71V etabliert. In einer frühen MS Studie wurden 54 Proteine in ASFV Partikeln detektiert, 15 davon Wirtsproteine. Der Einbau von Aktin, α-Tubulin und β-Tubulin ins Virion konnte ebenfalls bestätigt werden. Systematische massenspektrometrische Untersuchungen zur Charakterisierung des Proteoms der ASF Virionen lagen zu Beginn der vorliegenden Dissertation nicht vor, erst während der Anfertigung des Manuskripts wurde eine solche Studie durch Alejo et al. veröffentlicht.
Im Rahmen dieser Arbeit wurde ein auf einer Dichtegradientenzentrifugation ohne nachfolgende Gelchromatographie beruhendes Reinigungsprotokoll entwickelt und die Zusammensetzung reifer ASF Viruspartikel mittels MALDI-TOF/TOF Massenspektrometrie analysiert. Zur Anzucht einer GFP-positiven ASFV OUR T88/3 Mutante wurde die vom Wildschwein abstammende Zelllinie WSL-HP verwendet. Wesentliche Schritte der Reinigung waren eine niedertourige Zentrifugation zur Entfernung zellulärer Verunreinigungen, gefolgt von einer Sedimentation des Virus durch ein Saccharosekissen und einem Proteaseverdau. Final wurde die Präparation über einen selbstgenerierenden Optiprep™ Dichtegradienten gereinigt. Die Titerausbeute lag zwischen 30 und 70 %, die spezifische Infektiosität bei 2,4 x 109 TCID50/mg. Elektronenmikroskopische Untersuchungen zeigten, dass die Präparation zwar Virionen enthielt, aber auch, dass die Fixierung mit Glutaraldehyd die Stabilität der Virionen beeinträchtigt.
In der massenspektrometrischen Analyse wurden 29 der 33 bekannten ASFV Strukturproteine bestätigt. Von den neu identifizierten Strukturproteinen konnten vier (pK145R, pC129R, pE146L und pI73R) in allen drei Replikaten und sechs in zwei von drei Replikaten (p5, CP123L, CP312R, E184L, M1249L und M2248R) bestätigt werden. Ein weiteres bis dato nicht charakterisiertes Protein, p285L, konnte als mögliches neues Strukturprotein identifiziert werden. 152 Wirtsproteine wurden im Virion detektiert, darunter hauptsächlich Membranproteine oder Proteine des Zytoskeletts. Daneben wurde eine Reihe an phospholipidbindenden Proteine gefunden. Unter den identifizierten Proteinen waren fünf aus dem glatten ER und einige Vertreter der Hitzeschockproteine.
Im zweiten Teil dieser Arbeit sollte das intrazelluläre Proteom des ASFV identifiziert werden.
Für diese Untersuchungen wurden drei empfänglichen Zelllinien verwendet, die vom Wildschwein abstammenden Linie WSL-HP, Vero Zellen, die in der Vergangenheit für viele Studien herangezogen wurde und die menschliche Linie HEK-293, die aus einem weiteren nicht empfänglichen Wirt stammt.
Der in dieser Studie verwendete Virusstamm ASFV OUR T88/3 besitzt 157 ORFs. In früheren Studien konnte die Existenz eines Proteins für 44 ORFs bestätigt werden. Für weitere 69 ORFs wurden Transkripte, nicht aber die korrespondierenden Proteine, beschrieben, sodass für 44 ORFs kein Nachweis der Expression vorlag.
In der massenspektrometrischen Analyse wurden je Wirtszelle rund 1000 Proteine identifiziert. Insgesamt belief sich die Zahl der identifizierten ASFV Proteine auf 94, davon 88 in WSL-HP, 83 in Vero und 57 in HEK-293 Zellen. 54 ASFV Proteine wurden in allen drei Zelllinien detektiert. Für 34 der identifizierten ASFV Proteine war bisher nur die Existenz des Transkripts beschrieben, für 23 weitere weder die Existenz eines Proteins noch eines Transkripts. Für 44 der 94 identifizierten Proteine wurde das N-terminales Peptid detektiert. Bei fünf der MGF-110 Proteinen (1L, 2L, 4L, 5L und 14L) und den Proteinen pI329L und pCP123L wurde die Abspaltung der vorhergesagten Signalsequenz experimentell bestätigt.
Die MS Analysen wurden unter Verwendung des emPAI auch quantitativ ausgewertet.
Die geringe Zahl detektierter ASFV Proteine in HEK-293 Zellen korrelierte mit dem geringeren Anteil an ASFV Proteinen im Gesamtproteingehalt der Zelle (6,3 Mol%). Allerdings wurden einige Proteine in HEK-293 Zellen ähnlich stark oder sogar stärker exprimiert als in Vero bzw. WSL-HP Zellen. Die Abundanz einzelner ASFV Proteine variierte in den verschiedenen Zelllinien. Einige wurden jedoch durchgehend stark exprimiert wie z.B. das Strukturprotein p11.5. Einige bisher nicht charakterisierte Proteine, wie z.B. pK145R, pI73R und pC129R, wurden überraschenderweise ebenfalls in allen Zellen stark exprimiert und sind somit möglicherweise Träger wichtiger viraler Funktionen, die weiter untersucht werden sollten.