Refine
Document Type
- Doctoral Thesis (8)
Has Fulltext
- yes (8)
Is part of the Bibliography
- no (8)
Keywords
- Polysaccharide (3)
- Antarktis (1)
- Bacillus (1)
- Bacillus licheniformis (1)
- Bacillus subtilis (1)
- Bakterien (1)
- Bathymodiolus (1)
- Bathymodiolus symbiosis (1)
- CAZymes (1)
- Codakia orbicularis (1)
Institute
Symbiotic interactions are a key element of biological systems. One powerful strategy to gain insight into these interactions, and into biological systems in general, is the analysis of proteins expressed in situ using metaproteomics. In this thesis, host-microbe interactions in two mutualistic associations between chemosynthetic sulfur-oxidizing endosymbionts and marine invertebrates, the deep-sea tubeworm Riftia pachyptila and the shallow-water clam Codakia orbicularis, were studied by adapted and optimized metaproteomics methods.
The Riftia symbiosis, which inhabits hydrothermal vents in the deep sea, and in which the host completely depends on its symbiont for nutrition, has fascinated researchers for about four decades. Yet, the interaction mechanisms between both partners have been understudied so far. Additionally, while different aspects of the host’s biology have been described, a comprehensive analysis has been lacking. Moreover, although only one symbiont 16S rRNA phylotype is present in Riftia, the symbiont population of the same host expresses proteins of various redundant or opposed metabolic pathways at the same time. As the symbionts also exhibit a wide variety in size and shape, symbionts of different size might have dissimilar physiological functions, which remained as of now to be elucidated. In this thesis, we addressed both, the host-symbiont interaction mechanisms, and physiological roles of symbiont subpopulations. A comprehensive Riftia host and symbiont protein database was generated as prerequisite for metaproteomics studies by de novo sequencing the host’s transcriptome and combining it with existing symbiont protein databases. This database was then used for metaproteomics comparisons of symbiont-containing and symbiont-free Riftia tissues, to gain insights into host-symbiont interactions on the protein level. The impact of energy availability on host-symbiont interactions was studied by comparing specimens with stored sulfur (i.e., high energy availability) with specimens in which sulfur storages were depleted. We employed optimized liquid chromatography peptide separation to increase metaproteome coverage. With this analysis, we identified proteins and mechanisms likely involved in maintaining the symbiosis, under varying environmental conditions. We unraveled key interaction mechanisms, i.e.: (i) the host likely digests its symbionts using abundant digestive enzymes, and, at the same time, (ii) a considerable part of the worm’s proteome is involved in creating stable internal conditions, thus maintaining the symbiont population. Furthermore, (iii) the symbionts probably employ eukaryote-like proteins to communicate with the host. (iv) Under conditions of restricted energy availability, the host apparently increases digestion pressure on the symbiotic population to sustain itself.
Riftia symbionts of different size apparently have dissimilar metabolic roles, as revealed in this thesis. We enriched symbionts of different sizes using gradient centrifugation. These enrichments were subjected to protein extraction using a protocol optimized for the small sample amount available. Metaproteomics analysis included a gel-based workflow and evaluation of the complex dataset with machine learning techniques. Based on our metaproteomics study, we propose that Riftia symbionts of different cell size correspond to dissimilar physiological differentiation stages. Smaller cells are apparently engaged in cell differentiation and host interactions. Larger cells, on the other hand, seem to be more involved in synthesis of various organic compounds. Supposedly, in large symbionts endoreduplication cycles lead to polyploidy. Our results indicate that the Riftia symbiont employs a large part of its metabolic repertoire at the same time in the stable host environment.
The symbiont of the shallow-water clam Codakia orbicularis, which, like the Riftia symbiont, relies on reduced sulfur compounds as energy source and fixes inorganic carbon, is, unexpectedly, also able to fix atmospheric nitrogen, as shown by metaproteomic, genomic and biochemical analysis. Potentially, this benefits the host, as Codakia digests its symbiont and might thus supplement its diet with organic nitrogen fixed by the symbionts in addition to organic carbon in its nitrogen-poor seagrass habitat.
Vertreter der Gattung Bacillus werden nicht zuletzt wegen ihrer guten Sekretionsleistung als Expressionswirte in der pharmazeutischen und chemischen Industrie genutzt und stellen eine Alternative zum gramnegativen Bakterium Escherichia coli, Hefepilzen und anderen Organismen dar. Die Art B. licheniformis ist besonders für die Proteaseproduktion geeignet, während B. subtilis zusätzlich als Produktionswirt für die industrielle Herstellung von Wirk- und Zusatzstoffen wie Bacitracin und Riboflavin verwendet wird.
Das Genom beider Arten wurde vollständig sequenziert und ermöglicht die Analyse einzelner Gene und deren Funktionen. Um die Effizienz von industriellen Fermentationsprozessen zu erhöhen, können verschiedene genetische Modifikationen hilfreich sein. So kann beispielsweise die Deletion einzelner Gene bzw. Gencluster als auch die heterologe Expression bestimmter Gene zu einer Weiterentwicklung eines Produktionsstammes beitragen und die Vorteile mehrerer Stämme in einem vereinen. Ein Ziel der vorliegenden Arbeit beinhaltet u. a. die Erstellung eines optimierten Wirtssystems.
Im Mittelpunkt der dazu durchgeführten Untersuchungen zu B. subtilis standen verschiedene Enzyme des Acetoinstoffwechsels. Es konnte anhand der Überexpression der homologen Xylanase XynA gezeigt werden, dass die Deletion des Operons acoABCL in B. subtilis
6051HGW zu einer verbesserten Autoinduktion des acoA-Promotors führt. Durch einen alsDS-knock out hingegen wird diese verringert. Eine verbesserte Acetoinproduktion des Stammes B. subtilis 6051HGW konnte durch die Expression einer zweiten Kopie der Gene der beiden Untereinheiten einer Acetolactat-Synthase (IlvBH) erreicht werden. Zudem wurde während der stationären Phase ein verbessertes Wachstumsverhalten dieser Mutante auf Minimalmedium beobachtet.
Weiterhin wurde das Gen einer putativen Diacetyl-Reduktase aus dem Stamm B. subtilis TU-B-10 untersucht. Dieses Enzym könnte für die Reduktion des nichtenzymatisch entstandenen
Metaboliten Diacetyl zu Acetoin verantwortlich sein. Nach Integration des entsprechenden Gens in B. subtilis 6051HGW war jedoch keine erhöhte Acetoinkonzentration im Kulturüber-
stand zu messen.
B. subtilis 6051HGW LS8PD zeichnet sich u. a. durch seine 8-fache Proteasedefizienz aus. Anhand zweier Modellenzyme wurde die Eignung des Stammes als Expressionswirt heterologer Proteine untersucht. Mit Hilfe eines simulierten fed-batch-Verfahrens konnte das aus dem eukaryotischen Wirt S. cerevisiae stammende Gen sOx in B. subtilis 6051HGW LS8PD erfolgreich exprimiert und in den Überstand sekretiert werden. Nach Expression des Gens einer DnaseI aus Bos taurus konnte das entsprechende Protein extrazellulär dagegen nicht nachgewiesen werden.
Andere Untersuchungen, die im Rahmen der vorliegenden Arbeit durchgeführt wurden, beschäftigten sich mit dem Glyoxylatstoffwechsel von B. subtilis 6051HGW. Die Gene des
Glyoxylatzyklus sind nicht im Genom von B. subtilis enthalten. Werden sie aus B. licheniformis in B. subtilis6051HGW transferiert, kann der generierte Stamm B. subtilis ACE Überflussmetabolite wie Acetoin oder Acetat für das Wachstum nutzen. Dabei reichert sich jedoch extrazellulär der Metabolit Glycolat an, was möglicherweise zu einer Beeinträchtigung des Glyoxylatzyklus führen kann. Da die Akkumulation von Glycolat in B. licheniformis nicht erfolgt, wurde vermutet, dass die Aktivität der putativen Glyoxylat-Reduktase GyaR dafür verantwortlich ist.
Für weitere genetische Modifikationen von B. subtilis ACE war eine Neukonstruktion des Stammes erforderlich. Ein anschließender Transfer des Gens gyaR in B. subtilis konnte die extrazelluläre Glycolatkonzentration jedoch nicht senken. Auch die Deletion von gyaR in B. licheniformis
führte nicht zu höheren Konzentrationen dieses Metaboliten. Es kann geschlussfolgert werden, dass das untersuchte Gen gyaR nicht für eine Glyoxylat-Reduktase codiert.
Weitere Untersuchungen beschäftigten sich mit der Zellheterogenität von B. licheniformis P300. Das Auftreten von Subpopulationen in einer Bakterienkultur kann zu einem unterschiedlichen Verhalten der einzelnen Zellen und einer verringerten Gesamteffizienz in Produktions-
prozessen führen. In Zellkulturen des Stammes B. licheniformis P300 konnten verschiedene Subpopulationen identifiziert werden.
Um die genetische Zugänglichkeit zu optimieren, wurden verschiedene Untersuchungen zur natürlichen Kompetenz von B. licheniformis P300 durchgeführt. Zur Vereinheitlichung der
während der Kultivierung des Stammes auftretenden Subpopulationen wurden sigD- und sipW-tasA-yqxM-Deletionsmutanten erstellt. Zur Stammkonstruktion kam ein Verfahren zur Anwendung, das clean deletions im Genom erzeugte. Das Protokoll der Kolonie-PCR zur Identifizierung von potentiellen Deletanten wurde im Rahmen der vorliegenden Arbeit optimiert.
Die generierten Mutanten zeigten im Gegensatz zum Wildtypstamm keine sigD-vermittelte Motilität und Chemotaxis sowie keine tasA-vermittelte Biofilmbildung. Nach Auftrennung der Zellen durch Dichtegradientenzentrifugation wurden die auftretenden Banden mit denen des Wildtyps verglichen. Dabei zeigte sich, dass eine Deletion von sigD zur Vereinheitlichung der Subpopulationen führt. Die generierte Mutante wies weiterhin ein verbessertes Wachstum
als der Wildtyp und einen veränderten Phänotyp auf, zeigte aber eine verringerte Effizienz bei der Transformation von DNA durch Elektroporation.
Marine bacteria represent the most diverse organisms in the marine environment. The majority of these microbes is unknown and unculturable. Algae represent the main nutrient source for bacteria. Macro- and microalgae can consist to 70% of polysaccharides. The metabolic degradation of marine polysaccharides is underexplored and thus these mechanisms have to be investigated. These mechanisms are of high importance to generate defined oligosaccharides for the medical and pharmaceutical applications. The specific structure of marine poly- and oligosaccharides show antiviral activities, e.g. carrageenans from red algae are used for the inhibition of human papillomavirus. Another alginate derived marine polysaccharide show inhibition of the replication of the human immunodeficiency virus (HIV). The degradation mechanisms of marine CAZymes and the structure of marine polysaccharides should be further investigated for their high potential of antiviral activities and the creation of new marine drugs.
Many marine bacteria produce membrane extension like membrane vesicles or appendages but the function of these is poorly understood. In order to investigate their function, especially concerning polysaccharide utilization, proteomic analyses of subcellular compartments were performed. Microscopy analyses revealed that, beside MV, P. distincta forms different appendages, vesicle chains (VC) and thin filaments which were dedicated to extracellular polymeric substance. The formation of MV and VC was independent of growth phase or carbon source. The proteomic data showed that transporters end enzymes for the initial degradation of pectin and alginate were highly abundant in these membrane extensions and that there could be a kind of sorting for proteins in the membrane extensions. Additionally, two PUL encoded alkaline phosphatases and other phosphate acquiring enzymes were abundant in the MV and VC fractions. This indicates, that P. distincta constitutively produces enzymes for phosphate uptake, which would be necessary in the phosphate-limiting environment of the Southern Ocean. On the one hand marine bacteria produce membrane extensions in order to create a larger surface in the nutrient limiting marine environment for an increased chance to get in contact to nutrients and on the other hand the results indicate an accumulation of enzymes responsible for uptake and degradation of carbohydrates and phosphates in the MV and VC. Therefore, the membrane extensions act as nutrient traps and this might be beneficial for the bacteria in the diffuse aquatic environment.
The microbial community structure and the metabolism of bacteria in the Southern Ocean are very poorly investigated. The SO is a harsh environment for all organism but nevertheless, the SO is of high importance for the climate in the world due to the high carbon dioxide uptake. In this study water samples from two different sampling sites (S1 and S2) in the SO were investigated. With a metagenomic and metaproteomic approach the key players and the metabolic activity were analyzed. Additionally, the surface water was inoculated with pectin and incubated for several days in order to analyze polysaccharide utilization loci for pectin degradation and to isolate new pectin degraders. 16S-rDNA analyses revealed the bacterial community from the genomic data. Bacteria were separated in particle-associated and free-living bacteria. The overall particle associated bacterial community at both sampling sites was comparable, with Bacteroidetes and Gammaproteobacteria as the abundant phylum. Within the Gammaproteobacteria the Alteromonadaceae and Colwelliaceae were more abundant at S2 than at S1. The free-living bacteria at S1 were dominated by the Alphaproteobacteria, especially the SAR11 clade I. Metagenomic analyses showed that both sampling sites had comparable PUL composition, but taxonomical classification of PULs was differently. The metaproteome data revealed that PUL encoded enzymes were not highly abundant. Only few CAZymes were found, mostly TonB-dependent transporters belonged to the detected PUL proteins. Taxonomical classification of proteins showed differences between the sampling sites. At S2 the genus Colwellia and Arcobacter were highly increased compared to S1. At this location Candidatus Pelagibacter, Planktomarina and Polaribacter were the abundant taxa. The functional classification at both sampling sites was comparable. The only difference was the high abundance of Epsilonproteobacteria at S2 referable to the Arcobacter species. Nevertheless, the notably taxonomical differences could not be explained by the proteomic data and the functional classification, because no specific metabolic function could be highly addressed to these bacteria. These results assumed that different abundance of the key players could be explained by different environmental conditions. The pectin enriched cultured at both sampling sites were investigated for the functional potential of pectin degrading enzymes. No metaproteomic approach could be performed due to less sampling material. Only one PUL for the degradation of rhamnogalacturonan, a component of pectin, was found at S1. In contrast, bacteria grown on pectin could be isolated from these samples. Genome sequencing of five isolates showed that functional potential of pectin degradation is available. Due to the limitations of sequence alignments, it was not possible to detect a PUL responsible for pectin utilization in the metagenomic data. The results show that the polysaccharide degradation mechanism in the Southern Ocean has to be more investigated to get knowledge about the bacterial activity in the ocean’s surface and the carbon turnover in this underexplored environment.
Chemosymbiosis in marine bivalves – unravelling host-symbiont interactions and symbiotic adaptions
(2018)
Symbiosis essentially forms the cornerstone of complex life on earth. Spearheading
symbiosis research in the last few decades include the exploration of diverse mutualistic
animal-bacterial associations from marine habitats. Yet, many facets of symbiotic
associations remain under-examined. Here we investigated marine bivalves of the genera
Bathymodiolus and Codakia, inhabiting hydrothermal vents and shallow water
ecosystems, respectively, and their bacterial symbionts. The symbionts reside
intracellularly within gill epithelia and supply their host with chemoautotrophically fixed
carbon. They oxidize reduced substrates like sulfide (thiotrophic symbionts) and methane
(methanotrophic symbionts) from surrounding fluids for energy generation. The nature of
interactions between host and symbiont at the metabolic and physical level, as well as
between the holobiont and its environment remain poorly understood. In vitro cultivations
of both symbiont and host are difficult till date, hampering the feasibility of targeted
molecular investigations.
We bypassed culture-based experiments by proteogenomically investigating physically
separated fractions of host and symbiont cell components for the bivalves Bathymodiolus
azoricus, Bathymodiolus thermophilus and Codakia orbicularis. Using these
enrichments, we sequenced the symbionts’ genomes and established semi-quantitative
host-symbiont (meta-) proteomic profiles. This combined approach enabled us to resolve
symbiosis-relevant metabolic pathways and adaptations, detect molecular factors
mediating physical interactions amongst partners and to understand the association of
symbiotic traits with the environmental factors prevailing within habitats of the respective
bivalve.
Our results revealed intricate metabolic interdependence between the symbiotic partners.
In Bathymodiolus, these metabolic interactions included (1) the concentration of essential
substrates like CO2 and thiosulfate by the host for the thiotrophic symbiont, and (2) the
host’s replenishment of essential TCA cycle intermediates for the thiotroph that lacks
biosynthetic enzymes for these metabolites. In exchange (3), the thiotroph compensates
the host’s putative deficiency in amino acid and cofactor biosynthesis by cycling aminoacids
derived from imported precursors back to the host. In case of Codakia orbicularis,
the symbionts may metabolically supplement their host with N-compounds derived from
fixation of molecular nitrogen, a trait that was hitherto unknown in chemosynthetic
thiotrophic symbionts.
Individual proteogenomic investigations of the bivalves Bathymodiolus azoricus and
Bathymodiolus thermophilus showed that their symbionts are able to exploit a multitude
of energy sources like sulfide, thiosulfate, methane and hydrogen to fuel chemosynthesis.
The bivalves and their thiotrophic symbionts, however, are particularly adapted to
thiosulfate-utilization, as indicated by mitochondrial production and concentration of
thiosulfate by host and dominant expression of thiosulfate oxidation enzymes in the
symbiont. This may be advantageous, because thiosulfate is less toxic to the host than
sulfide. The central metabolic pathways for energy generation, carbon and nitrogen
assimilation and amino acid biosynthesis in thiotrophic symbionts of both Bathymodiolus
host species are highly conserved. Expression levels of these pathways do, however, vary
between symbionts of both species, indicating differential regulation of enzyme synthesis,
possibly to accommodate differences in host morphology and environmental factors.
Systematic comparison of symbiont-containing and symbiont-free sample types within
and between B. azoricus and B. thermophilus revealed the presence of ‘symbiosisspecific’
features allowing direct host-symbiont physical interactions. Host proteins
engaged in symbiosis-specific functions include 1) a large repertoire of host digestive
enzymes predominant in the gill, possibly facilitating symbiont population control and
carbon acquisition via direct enzymatic digestion of symbiont cells and 2) a set of host
pattern-recognition receptors, which may enable the host to selectively recognize
pathogens or even symbionts “ripe” for consumption. Symbiont proteins engaged in
symbiosis-specific interactions included 3) an enormous set of adhesins and toxins,
putatively involved in symbiont colonization, persistence and host-feeding.
Bathymodiolus symbionts also possess repertoires of CRISPR-Cas and restrictionmodification
genes for phage defense that are unusually large for intracellular symbionts.
Genomic and proteomic comparisons of thiotrophic symbionts of distinct Bathymodiolus
host species from different vent sites revealed a conserved core genome but divergent
accessory genomes. The B. thermophilus thiotroph’s accessory genome was notably more
enriched in genes encoding adhesins, toxins and phage defense proteins than that of other
Bathymodiolus symbionts. Phylogenetic analyses suggest that this enrichment possibly
resulted from horizontal gene acquisition followed by multiple internal gene duplication
events. In others symbionts, these gene functions may be substituted by alternate
mechanisms or may not be required at all: The methanotrophic symbionts of B. azoricus,
for example, has the genetic potential to supplement phage defense functions. Thus, the
accessory genomes of Bathymodiolus symbionts are species- or habitat-associated,
possibly facilitating adaptation of the bivalves to their respective micro- and macroenvironments.
In support of this, we show that symbiont biomass in B. thermophilus,
which hosts only one thiotrophic symbiont phylotype, is considerably higher than in B.
azoricus that hosts thiotrophic and methanotrophic symbionts. This suggests that different
symbiont compositions in each species produce distinct microenvironments within the
holobiont.
Our study presents an exhaustive assessment of the genes and proteins involved in this
bivalve-microbe interaction, hinting at intimate host-symbiont interdependencies and
symbiotic crosstalk between partners. The findings open novel prospects for
microbiologists with regard to mechanisms of host-symbiont interplay within highly
specialized niches, origin and distribution of prokaryote-eukaryote interaction factors
across both mutualistic and pathogenic associations.
Analysis and Reduction of Cellular Heterogeneity in Strain Optimization of Bacillus licheniformis
(2021)
Bacillus species invest substantial resources in inherent cellular processes for pre-adaptation to environmental changes, many of which are dispensable in the controlled environment of industrial bioprocesses. The underlying physiological mechanisms are well characterized in B. subtilis, but only little is known about these processes in the closely related B. licheniformis. Moreover, experimental conditions in previous studies differ from industrial settings in most parameters, foremost in batch cultures or plate-based analysis over fed-batch processes. In this thesis, cellular heterogeneity was analyzed in B. licheniformis in optimized, nutrient-rich media in batch and fed-batch cultivations. Systematic inactivation of genes involved in biofilm formation and synthesis of the flagellar apparatus or global regulators thereof resulted in higher protein production and provided new insights into biofilm formation and cellular heterogeneity in this strain.
Polysaccharide is a major constituent of the total organic carbon that is generated by photosynthetic eukaryotes. In the marine realm, where approximately half of annual global carbon fixation occurs, algae can produce large amounts of polysaccharide during bloom events. Phytoplankton blooms are frequently seasonal phenomena, and spring blooms in particular have been a focus of study as they are predictable in space and time. This makes them much more amenable model systems in which to explore the processes that occur as organic carbon is recycled.
It is assumed that the bulk of the polysaccharides algae produce serve one of two primary functions - namely acting as an energy storage molecule, or they serve as structural polymers in the cell walls. Other polysaccharides may also have protective functions as exudates. Regardless of function in algae, the polysaccharides are a valuable energy source for heterotrophic bacteria. The combination of abundance and predictable or semi-predictable structure of the polysaccharides has led to proliferation of variations on a particular sequestration and degradation strategy among the Bacteroidetes and Gammaproteobacteria that is frequently characterised as being ‘selfish’. The strategy is based on uptake of poly- and especially oligosaccharides into the periplasm via the use of TonB-dependent transporters. Once in the periplasmic space, oligomers can be further degraded to monomers that can then be transported into the cytosol. This mechanism is beneficial to the cell as it needn’t then lose the nutritive benefit of the polysaccharide to other cells, which may or may not have manufactured their own degradative carbohydrate active enzymes (CAZymes).
The research articles that make up this thesis are thus based around attempts to find and elucidate the polysaccharide preferences of heterotrophic bacteria that become abundant following phytoplankton blooms.The first article is a study into the abundance of TonB-dependent transporter proteins in metaproteomes and metagenomes across a single spring phytoplankton bloom at the long term research station at Helgoland. This investigation identifies transporters for laminarin and alpha-glucans, the two most abundant glucose-based storage polysaccharides, are the most abundant predicted polysaccharide transporting TonB-dependent transporters during the bloom. However, as the bloom progressed, and particularly following a doubling of bacterial cell numbers, the proportion of predicted polysaccharide transporters dedicated to laminarin and alpha-glucan transport declined relative to transporters for less readily degraded mannose-, xylose-, and fucose-containing polysaccharides. The inference is that this change is an active response to the availability of the different polysaccharides, or their relative attractiveness as growth substrates during the period.
The second article is an in-depth look at one of the most abundant Bacteroidetes clades, which was previously unnamed, and has not to date been cultivated. The most abundant species in this clade grows rapidly and often peaks earlier than other heterotrophic clades. It was found to be limited in predicted polysaccharide consumption capability, having only PULs for predicted laminarin degradation. It is also detectable in many locations at higher latitudes where phytoplankton blooms are expected to occur, indicating this is a globally successful consumer of algal organic matter, and may have an outsize significance for global laminarin degradation given its high abundance.
The third article is a more holistic study of phytoplankton bloom associated Gammaproteobacteria, which have otherwise been rather ignored compared to the Bacteroidetes. Gammaproteobacteria overlap with Bacteroidetes to some extent in being clear consumers of laminarin, but fewer of them are clearly capable of consuming the more complex cell-wall derived polysaccharides. Some may, however, be producers of alginate, an otherwise mysteriously popular polysaccharide with Bacteroidetes, given that it is not known to be produced by bloom forming microalgae.
The fourth article then goes into detail on the PUL content of Bacteroidetes, based on metagenomic data. It finds five substrates, alpha- and beta-glucans, xylose and mannose rich polysaccharides, and alginate, are the most frequent predicted polysaccharide substrates for Bacteroidetes PULs among populations responding to the Helgoland spring blooms.
This thesis thus summarises multiple metagenomic and metaproteomic investigations into the polysaccharide consumption capabilities of marine heterotrophic bacteria. These bacteria have a profound impact on the overall carbon cycle in coastal regions, and are critical for understanding how changes in atmospheric carbon concentrations impact carbon turnover and storage in the world's oceans.
Crab Spa, is a stable diffuse-flow hydrothermal vent site located at the 9°N hydrothermal vent field on the East Pacific Rise (EPR). Remarkably, the physicochemical conditions at Crab Spa have remained largely constant since its discovery in 2007 providing a uniquely stable environment in which a well-adapted and stable microbial community has evolved. This microbial community is dominated by the class Campylobacteria, accounting for up to 90% of the community. Little is known, however, about the metabolic pathways that allow the Campylobacteria to dominate the bacterial community at Crab Spa. To address this fundamental question, a two-pronged approach was taken consisting of first determining the dominant metabolic pathways in situ, and second to study those same metabolic pathways and their controls in more detail under defined conditions in vitro in the model campylobacterium Sulfurimonas denitrificans.
Metagenomic analysis of two environmental samples provided the blueprint to determine the metaproteomic profile of the Crab Spa microbial community. This allowed to identify the dominant organisms and their major metabolic pathways sustaining the microbial community at Crab Spa. About 90% of the genes for transcription and protein synthesis of the metagenome sequences belonged to just three genera of Campylobacteria: Sulfurimonas, Sulfurovum and Arcobacter. The metaproteomic analyses confirmed that the active microbial community was dominated by Campylobacteria, carrying out carbon fixation via the reductive TCA cycle predominantly fueled by the oxidation of sulfide and sulfur with nitrate and oxygen. The analysis further revealed that pathways might be partioned between different members of the bacterial community. Proteins involved in electron acceptor–related pathways, in particular denitrification, accounted for up to 20% of the whole metaproteome, which could be seen as an adaptation to the scarcity of electron acceptors at Crab Spa. Conversely, proteins related to electron donor–associated metabolic pathways accounted for less than 0.1% of the metaproteome, possibly in response to the high concentration of the electron donor. To follow up on this hypothesis, chemostat experiments with S. denitrificans were performed under either electron-acceptor or -donor limitation. These experiments confirmed that electron-acceptor limitation lead to the elevated expression of electron-acceptor proteins. However, a higher expression of electron-donor proteins was not observed under electron-donor limitation. Besides hydrogen sulfide, elemental sulfur has the potential to serve as an important electron donor at Crab Spa. However, up to know no information was available on how Campylobacteria might be able to utilize elemental sulfur. For this, S. denitrificans grew with either thiosulfate or cyclooctasulfur (S8) as sole electron donors and its transcriptome and proteome was compared. The results revealed a differential expression of the SOX sulfur oxidation pathway (soxCDYZ and soxABXYZ) in response to the two different sulfur compounds. Based on these findings, a model for the oxidation of cylcooctasulfur was proposed that also applies to other sulfur-oxidizing Campylobacteria and helps in the interpretation of environmental metatranscriptomic and –proteomic data (Götz, Pjevac, et al., 2018; Lahme et al., 2020). The presented results help to better understand the microbial processes at hydrothermal vents.
In den Weltmeeren findet rund die Hälfte der jährlichen globalen Kohlenstofffixierung statt, davon ein großer Anteil in küstennahen Regionen. Hier kommt es zu wiederkehrenden saisonalen Algenblüten, die durch eine zeitlich begrenzte explosionsartige Vermehrung von Mikroalgen (hauptsächlich Diatomeen und Coccolithophoren) charakterisiert sind. Vor allem Frühjahrsblüten (März-Mai) haben aufgrund ihrer zeitlichen und räumlichen Vorhersagbarkeit einen hohen Stellenwert als Modellsysteme, anhand deren sich der Kohlenstoffkreislauf der Meere untersuchen lässt.
Mikroalgen produzieren eine große Vielfalt an Makromolekülen, die für die mit ihnen vergesellschafteten Bakterien als Nahrungsgrundlage dienen. Besonders im Fokus stehen hier die für den Kohlenstoffkreislauf relevanten Polysaccharide. Im Gegensatz zu anderen natürlichen Makromolekülen wie DNA oder Proteinen können Polysaccharide aus vielen verschiedenen Monomeren mit unterschiedlichsten Bindungen bestehen. Zusätzlich finden sich an diesen Zuckermonomeren viele Modifikationen wie Acetylierungen, Methylierungen oder Sulfatierungen, die die Komplexität weiter erhöhen. Diese Variabilität bedingt eine hohe strukturelle und funktionale Diversität. So können Polysaccharide Speicherstoffe, Zellwandbestandteile oder Teile der extrazellulären Matrix darstellen.
Komplementär hierzu besitzen Polysaccharid-verwertende Bakterien entsprechend komplexe, enzymatische Abbaumechanismen. Besonders hervorzuheben sind hier die Bakterien des Phylums Bacteroidota, die sich in verschiedensten Nischen auf den Abbau von Polysacchariden spezialisiert haben. Sie finden sich in Bodenproben, als Teil der menschlichen Darmflora, oder eben auch als bedeutende Begleiter von Algenblüten.
Bacteroidota (und in marinen Systemen hauptsächlich die zu ihnen gehörenden Flavobakterien) besitzen zum Abbau diverser Polysaccharide sogenannte Polysaccharide utilization loci (PULs), genomische Inseln, die alle notwendigen Proteine zur Aufnahme und Abbau eines bestimmten Polysaccharids codieren. Hierzu gehören hochspezifische Enzyme (Carbohydrate-active enzymes, CAZymes), transkriptionelle Regulatoren sowie Transportersysteme, die initial gespaltene Oligosaccharide über die Membran in das Bakterium transportieren, wo sie von weiteren Enzymen vollständig abgebaut werden. Diese Co-Lokalisation der benötigten Gene und deren gemeinsame Regulation stellt einen enormen Selektionsvorteil der Bacteroidota dar und ist der Grund, warum sie, ähnlich wie Algen, einer jährlich wiederkehrenden Sukzession folgen, die sich gut untersuchen lässt.Die Forschungsartikel, die Teil dieser Doktorarbeit sind, untersuchen das Zusammenspiel von Polysaccharid-produzierenden Algen mit den Bakterien, die sie abbauen, aber auch darauf basierende Beziehungen der Bakterien untereinander. Die erste Publikation beschäftigt sich mit dem weit verbreiteten Speicherpolysaccharid α-Glucan, für das der Großteil der blütenbegleitenden Bakterien einen spezifischen aktiven PUL besitzt. Eine Untersuchung der in der Blüte vorhandenen Algenarten bestätigte, dass die Blüte von β-Glucan-produzierenden Algen dominiert wird. Da Bakterien aber selbst α-Glucane als Speicherpolysaccharide verwenden, konnte gezeigt werden, dass nicht die Algen selbst, sondern die Bakterien Hauptproduzent dieser Polysaccharide während einer Phytoplanktonblüte sind. Bakterielle Proteine, die dem Abbau von Algen-β-Glucan und dem daraus folgenden Aufbau von bakteriellem α-Glucan dienen, waren in Umweltproben und in Laborkulturen unter ähnlichen Bedingungen abundant. Die Untersuchung von extrahiertem bakteriellem Polysaccharid bewies, dass dieses nicht nur α-Glucan enthält, sondern dass dieses Polysaccharid auch in der Lage war, α-Glucan PULs mariner Bakterien zu induzieren. Hier zeigte sich ein innerhalb des marinen Kohlenstoffkreislaufs bisher wenig berücksichtigter Kreislauf, indem Bakterien Polysaccharide anderer Bakterien nutzen, die z.B. durch Viren lysiert wurden.
Die anderen zwei Artikel dieser Arbeit befassen sich mit dem Abbau von Zellwandpolysacchariden durch blütenassoziierte Modellbakterien. In einer der Studien wird detailliert der Abbau eines β-Mannans (ein Polysaccharid das hauptsächlich aus dem Monosaccharid Mannose besteht) durch ein Bakterium des Genus Muricauda beschrieben. Die PUL-Struktur dieses Bakteriums kam in mehreren anderen Phytoplanktonblüten-assoziierten Bakterien vor. Diese Beobachtung wies darauf hin, dass es sich hier um ein Mannan mit zusätzlichen Galactose- und Glucose-Substitutionen handelte. Proteom-Untersuchungen bestätigten, dass das Bakterium derartige Substrate unter Induktion des β-Mannan-PULs nutzen können. β-Mannan konnte durch Antikörpermarkierung in Blütenproben sowie spezifischen Mikroalgenarten (Chaetoceros, Coscinodiscus) nachgewiesen werden. Die in dieser Publikation charakterisieren β-Mannan-PUL-codierten Enzyme waren in der Lage, dieses Signal zu löschen, was bewies, dass Muricauda sp. Mannan-basierte Zellwandpolysaccharide bestimmter Arten von Mikroalgen abbauen kann.
Die dritte Studie geht näher auf den Abbau von Xylanen (bestehend aus Xylose) durch ein blütenassoziiertes Bakterium des Genus Flavimarina ein. In diesem Bakterium wurden anhand der enthaltenen Xylanasen zwei putative Xylan-PULs annotiert. Wachstumsexperimente und Proteom-Untersuchungen zeigten, dass einer dieser PULs hauptsächlich bei Wachstum auf Glucoronoxylan induziert wird, während der andere PUL aufArabinoxylane stärker reagierte. Untersuchung der PUL-CAZymes bestätigte diese Ergebnisse durch Charakterisierung mehrerer Xylanasen sowie Glucoronidasen und Arabinofuranosidasen. Zusätzlich codierten beide PULs für Esterasen, die eine Modifikation der natürlichen Substrate durch Acetylierungen oder Methylierungen nahelegen. Da all diese Merkmale von terrestrischen Xylanen geteilt werden und in Blütenproben aus Küstennahen Regionen Xylane nachgewiesen wurden, ist es möglich, dass Bakterien aus solchen Regionen sowohl Xylane terrestrischen Ursprungs (z.B. durch Flusseinspeisung) sowie marinen Ursprungs abbauen können.