Refine
Document Type
- Doctoral Thesis (7)
Language
- English (7)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
- Wendelstein 7-X (5)
- Stellarator (4)
- Divertor (3)
- Plasmaphysik (3)
- Kernfusion (2)
- Plasma physics (2)
- Artificial nerual networks (1)
- Bayes-Verfahren (1)
- Bootstrap current (1)
- Coil Optimization (1)
Institute
Experience in the construction of optimized stellarators shows the coil system is a significant challenge. The precision necessary allow the generation of accurate flux surfaces in recent experiments affected both cost and schedule negatively. Moreover, recent experiments at Wendelstein 7-X have shown that small field corrections were necessary for the operation of specific desired magnetic configurations. Therefore, robust magnetic configurations in terms of coil geometry and assembly tolerances have a high potential to facilitate swifter and less expensive construction of future, optimized stellarators. We present a new coil optimization technique that is designed to seek out coil configurations that are resilient against 3D coil displacements. This stochastic version of stellarator coil optimization uses the sampling average approach to incorporate an iterative perturbation analysis into the optimization routine. The result is a robust magnetic configuration that simultaneously reproduces the target magnetic field more accurately and leads to a better fusion performing coil configuration.
An experimental investigation of particle parallel flows has been carried out at Wendelstein 7-X (W7-X), one of the most advanced stellarators in the world. The studies are restricted to the outermost plasma region, the scrape-off layer (SOL), which is shaped to tackle the exhaust problem in vision of future fusion reactors based on plasma magnetic confinement. The aim of the measurements is to set the basis for a physics analysis of the SOL dynamics by obtaining direct information on convective heat transport, together with the assessment of the predominant flow directions of the main plasma ions and of fusion-products or wall-released impurities. In this way, a better comprehension of the interplay between the transport parallel and perpendicular to the SOL field lines can be achieved, contributing to the understanding of the effectiveness of the island divertor configuration.
The chosen instrument for the experimental studies is the Coherence Imaging Spectroscopy (CIS) diagnostic, a camera-based interferometer capable of measuring 2D Doppler particle flows associated with a selected visible line from the plasma. The diagnostic is distinguished by its high time resolution and spatial coverage, allowing the visualisation and measurements of flow velocities for a full module of W7-X simultaneously. A CIS diagnostic has been fully designed for W7-X with an improved level of accuracy achieved thanks to the implementation of a new calibration source, a continuous-wave-emission tunable laser. The laser allowed a full characterization of the diagnostic and a frequent precise calibration, making the CIS system reliable for parallel flow investigations during the operational campaign OP1.2. The validity and importance of the CIS measurements have been further confirmed with dedicated simulation of the SOL plasma parameters by the EMC3-EIRENE code, and by comparisons with other edge diagnostics. The CIS results show the effects related to dynamical changes in the SOL due to impurity gas puffs or the development of a plasma current. Moreover, CIS can be used as a powerful tool to test the limits of the current theoretical models, for example in the case of forward and reversed field experiments.
The non-renewable energy sources coal, oil and natural gas that contribute the major share of the world's energy, will be running out in the next 40-80 years. With the growing energy demands especially in developing countries, which is likely to surpass that of the developed countries in next 50 years, an alternate energy source is the need to the hour. The nuclear fusion energy is foreseen as one of the potential candidates to solve the current global energy crisis. One of the major challenges faced by the fusion community is the problem of power exhaust. With the larger fusion devices to be built in the future, the heat load on the plasma facing components are expected to grow higher. The present work explores two numerical studies performed on the Wendelstein 7-X, the world's largest stellarator type fusion device, to cope with this problem.
The first project on `'Numerical Studies on the impact of Connection Length in Wendelstein 7-X'' identifies magnetic configuration with long connection lengths, which could bring down the peak heat fluxes onto the divertor to manageable levels, by greater role of cross-field transport which may assist to get a wider heat deposition profile. The second project on `'Development of Heating Scenario to Reduce the Impact of Bootstrap Currents in Wendelstein 7-X'' advocates a novel self-consistent approach to reach high plasma density at full heating power without overloading the divertor during the transient phase of the evolution of the toroidal plasma current, by controlling two parameters; density and power. The aim of both the projects is to contribute to tackling the challenge of the tremendous power exhaust from fusion plasma which, if solved, will be a large step closer to a fusion power plant.
With this thesis, studies which form the bedrock for the long term goal of first wall heat load control and optimization for the advanced stellarator Wendelstein 7-X are developed, described and put into context. It is laid out how reconstruction of features of the edge magnetic field from plasma facing component heat loads is an important first step and can successfully be achieved by artificial neural networks. A detailed study of plasma facing component heat load distribution, potential overloads and overload mitigation possibilities is made in first order approximation of the impact of the main plasma dynamic effects.
This thesis describes how the data of the Langmuir probes in the Wendelstein 7-X (W7X) Test Divertor Unit (TDU) were evaluated, checked for consistency with other diagnostics and used to analyse plasma detachment.
Langmuir probes are an electronic diagnostic, and were among the first to be used in plasma physics to determine particle fluxes, potentials, temperatures and densities.
W7X is a large, advanced stellarator, magnetic confinement fusion experiment, operated at the Max-Planck-Institut for Plasma Physics(IPP) in Greifswald, Germany.
Its TDU is an uncooled graphite component, shaped and positioned to intercept the convective heat load of the plasma.
Detachment describes a desirable operation state of strongly reduced loads on this component.
The evaluation of Langmuir probe data relies heavily on models of the sheath, formed at the interface between plasma and a solid surface, to infer plasma parameters from the directly measured quantities.
Multiple such models are analysed, generalised, and adapted to our use case.
A detailed comparison is made to determine the most suitable model, as this choice strongly affects the predicted parameters.
Special attention is paid to uncertainties on the parameters, which are determined using a Bayesian framework.
From the inferred parameters, heat and particle fluxes are calculated.
These are also indirectly measured by two other, camera-based diagnostic systems.
Observations are compared to test the validity of assumptions and calculations in the evaluation of all three diagnostics by checking their results for consistency.
The first comparison, with the infrared emission camera system, shows good agreement with theoretical predictions and reported measurements of the sheath transmission factor, for which we derive and measure a value in W7X.
Parameter dependencies in the quality of this agreement hint at remaining issues.
The second comparison, with the Hydrogen alpha photon flux camera system, shows significant discrepancy with expectations.
These are argued to originate from systematic differences in the measurement locations, which are quantified and related to the magnetic topology.
Langmuir probe observations of individual discharges are analysed to discuss conditions under which detachment occurs, transition into that state and fluctuations observed prior to and during it.
A spatial parametrisation of the data is developed and used to facilitate this.
These observations contribute to the larger aim of understanding particle balance control and fusion plasma edge processes.
In this work, studies with respect to the exhaust problem were performed
in the stellarator experiment Wendelstein 7-X with different target concepts and different magnetic field geometries. Different infrared cameras were used to study the heat flux from the plasma onto the PFC. In the first publication, the limiter set-up was used with a simpler magnetic topology in the plasma edge. The radial fall-off of the parallel heat flux for inboard limiters in W7-X shows, similar to inboard limiters in tokamaks, two different radial fall-off lengths, a short (narrow) one, characterizing the near-SOL, and a long (broad) characterizing the far-SOL. For the far-SOL, the heating power and connection length have been identified as the main scaling parameters, while for the near-SOL, the electron temperature close to the LCFS has been identified as the main scaling parameter. The two fall-off lengths differ by a factor 10, and the found scalings for both regimes differ from known models and experimental scalings in tokamaks. A turbulent-driven feature was discussed in the publication as a possible explanation for the behavior of the fall-off length in W7-X.
The gained information and data have been further used to support many
other publications, covering the symmetry of the heat loads, the
energy balance of the machine, and seeding experiments.
The heat exhaust in W7-X with an island divertor was studied in the second
and third publication. Definitions of parameters such as peaking factor and
wetted area were applied for the heterogeneous heat flux pattern on the
W7-X divertor. It was shown that the island divertor concept is capable
of spreading out the heat efficiently, resulting in large wetted areas of up to 1.5 m2. The reached values for the wetted area are comparable to the ones of the larger tokamak JET but with a much smaller ratio of wetted
area to the area of the last closed flux surface. Furthermore, a positive
scaling of the wetted area with the power in the SOL was observed. This
scaling is beneficial for future reactors but needs further investigation of the involved transport processes. The peaking factor (discussed in the second publication) describes how concentrated the heat load is within the region of the strike line. It was shown that this factor is decreasing for increasing densities without affecting the wetted area. The present work paves the way for further analysis of the transport processes of the heat flux towards the island divertor of Wendelstein 7-X.
This work presents the first experimental investigation of the gas balance on the optimized modular stellarator Wendelstein 7-X (W7-X). A balance of all injected and removed particles and a measurement of internal particle reservoirs allows inference of the bound particle reservoir in the wall, which is of interest due to its effects on plasma density control and fuel retention. Different scenarios of the gas balance are presented with data from the operation campaign 1.2 with an inertially cooled graphite divertor. Both net outgassing and net retention scenarios are presented and W7-X is found to operate stable in a wide range of scenarios with varying wall conditions.
Since fusion experiments are conducted in ultra-high vacuum, suitable gauges are required for total and partial pressure measurement. The challenges and opportunities of the operation of pressure gauges in the steady magnetic field extending beyond plasma pulses are discussed. The performance of newly improved neutral pressure gauges, based on crystal cathode emitters is quantified. These provide improved operational robustness since they can be operated for long periods of time in strong magnetic fields. A crystal cathode setup and and its operation performance is presented along with a fast calibration scheme.
Partial pressure measurements provide additional important information complementing the total neutral pressure measurements, and allowing additional physics insights. As part of this thesis work, a new diagnostic of this kind was implemented on W7-X, the so-called diagnostic residual gas analyzer (DRGA). It provides a wealth of information on various neutral gas species, with a relatively high time resolution - of order a few seconds. The diagnostic setup and its first results are presented in this thesis.