Refine
Document Type
- Doctoral Thesis (9)
Has Fulltext
- yes (9)
Is part of the Bibliography
- no (9)
Keywords
- Diabetes mellitus (2)
- Vorhofflimmern (2)
- AminopeptidaseN (1)
- Angiotensin II Typ 2 Rezeptor (1)
- Aquaporins (1)
- Atrial Fibrillation (1)
- BRIN-BD11-Insulinomazellen (1)
- Bay 58 2667 (1)
- Docosahexaensäure (1)
- Dronedaron (1)
In der vorliegenden Forschungsarbeit wurde untersucht, zu welchen Veränderungen es im Proteom der pankreatischen β-Zelle durch Erzeugung von Hyperglykämie und/oder Hyperlipidämie kommt, die z.B. im Rahmen des Metabolischen Syndroms auftreten können.
Für die Experimente wurde die Zelllinie BRIN BD11 verwendet. Eine Behandlung erfolgte vergleichend mit Glucose (25 mM) und/oder Docosahexaensäure (DHA 0,1 mM) für 24 Stunden.
Das Proteom der BRIN-BD11 Zellen wurde mit Hilfe von 2D Differenzial-Fluoreszenz-Gelelektrophorese (DIGE) analysiert und die Proteine unter Verwendung der Massenspektrometrie identifiziert. Es konnten insgesamt 1101 Proteine in 1487 detektierten Spots bestimmt werden. Darunter stellten sich 90 Spots unter den oben genannten Stimulationen als signifikant reguliert dar. Aus diesen wurden 63 regulierte Proteine identifiziert, die sich verschiedenen Bereichen des Stoffwechsels zuordnen lassen, u.a. dem Glucosestoffwechsel, der Atmungskette, katabolen Prozessen oder den Reparatur- und Schutzmechanismen.
Eine Ingenuity Pathway Analyse anhand der regulierten Proteine ergab Zuordnungen zu 3 Netzwerken:
1 Nukleinsäuremetabolismus, Lipidmetabolismus und Biochemie kleiner Moleküle,
2 DNA -Replikation, -Rekombination und -Reparatur, Nukleinsäuremetabolismus und Biochemie kleiner Moleküle,
3 Kohlenhydratmetabolismus, molekularer Transport und Biochemie kleiner Moleküle.
Weiterhin konnte eine funktionelle Einteilung sowie die Verteilung der Proteine nach Zellkompartimenten dargestellt werden.
Eine Verifizierung der Ergebnisse mittels RT-qPCR erfolgte für Cathepsin D, Endoplasmic reticulum lipid raft-associated protein 2, Melanocyte proliferating gene 1, Glutamat-Cystein-Ligase sowie für die Thioredoxin-Reduktase und das Dihydropyrimidinase-related protein 2. Desweiteren wurden Western Blot Analysen zu Thioredoxin-Reduktase und das Dihydropyrimidinase-related protein 2 durchgeführt.
Die Ergebnisse weisen auf eine Regulation im Sinne einer Kompensation der Stressoren hin, die durch gesteigerte Expression/Aktivität antioxidativer Systeme wie Glutathion und Thioredoxin erklärbar wären. Zudem konnte ein Proteommuster der BRIN BD11 Zellen erstellt werden und bildet mit der massenspekrometrischen Identifizierung der Proteine eine Grundlage für weitere Untersuchungen an der Zelllinie.
Fokus der vorliegenden Arbeit war es, die Regulation des Aldosterons durch kaliumreiche Diät in Assoziation mit Expression und Funktion des AT2R in der NNR zu analysieren. Es wurde nachgewiesen, dass eine Renin-unabhängige Stimulation der Aldosteronsynthese durch die HKD in verschiedenen Tierstämmen (Sprague Dawley und transgene CxmAT2R- Ratten der Linie 235) mit Erhöhung der Expressionen des AT2R und der Proteinkinase p85α einhergehen. Die Ergebnisse über TASK-3 stellen die bisher publizierten Befunde in Frage, sodass eine abschließende Beurteilung der Lokalisation und Regulation offen bleiben muss. Wie erwartet, kam es nach Kaliumbelastung in allen untersuchten Tierstämmen zur Erhöhung der gemessenen Plasmakonzentration für Aldosteron bei annähernd gleichbleibenden Plasmareninkonzentrationen. Dieser Effekt konnte durch mRNA- Untersuchungen in der ISH bestätigt werden. Die relativen Expressionen des AT2R in der NNR ergaben für die SD und WT- Tiere signifikante Anstiege. Da die TGR des zweiten Experiments bereits eine basale Überexpression des AT2R aufwiesen, war hier keine weitere Stimulation des AT2R mehr zu verzeichnen. Die Bedeutung von Differenzierungsprozessen/ Steigerung der Proteinbiosynthese wird durch die nachgewiesene Stimulation der relativen Expression von p85α in beiden Experimenten nahegelegt. Weitere Ziele der Arbeit waren Untersuchungen zur Lokalisation des TASK-3- Kanals in der NN. Analog zur bekannten AS- Sequenz von TASK-3 wurden codierende Abschnitte mit geringer Homologie zu anderen Kaliumkanälen gewählt. Dabei konnte unabhängig von der Diät spezifische cDNA sowohl aus NNR und NNM amplifiziert werden. Auch in der ISH konnte TASK-3 im Bereich der ZG, ZF und in geringem Maße auch in weiter innen liegenden Schichten gefunden werden, sodass die Richtigkeit der bisher zu TASK-3 veröffentlichten Daten angezweifelt werden muss. Auf Proteinebene (IHC) zeigte sich eine kräftige Färbung im NNM sowie nur einzelne, gefärbte Zellnester ohne Zuordnung zu ZF bzw. ZG. Die Daten weisen darauf hin, dass TASK-3 in unterschiedlichem Maße in der gesamten Nebenniere exprimiert wird und die Regulation der relativen Expression nicht eindeutig durch Kalium reguliert oder funktionell mit dem AT2- Rezeptor assoziiert ist. Die im Rahmen der vorliegenden Arbeit erhobenen Daten betonen die Bedeutung der Regulation des RAAS durch kaliumreiche Diät für die Aldosteronproduktion und dessen funktionellen Zusammenhang mit Expressionen verschiedener Rezeptoren der Nebenniere. Von besonderem Interesse wird in zukünftigen Untersuchungen sein, inwieweit es Interaktionen zwischen AT2R, p85α, weiteren Adapterproteinen und den hyperpolarisierenden Kaliumkanälen auf intrazellulärer Signalebene sowie Liganden-abhängigen Signaltransduktionswegen gibt. Auch sollte der Einfluss lokaler Renin- Angiotensin- Systeme auf die Homöostase bei systemischer Applikation von Rezeptorantagonisten und –agonisten weiter untersucht werden. Das transgene CxmAT2R- Modell oder auch die Verwendung des kürzlich neu entwickelten AT2- Rezeptoragonisten (Compound 21) könnten in diesem Zusammenhang zu aufschlussreichen Erkenntnissen führen.
Der akute Myokardinfarkt auf Grundlage einer koronaren Herzerkrankung ist eine der häufigsten Todesursachen weltweit. Besonders ältere Patienten leiden oft an mehreren kardiovaskulären Grunderkrankungen - so sind Vorhofflimmern und KHK häufige Komorbiditäten. Die pharmakologische Therapie von Vorhofflimmern bei bestehender KHK ist ein therapeutisches Problem. Dronedaron hat sich in zahlreichen klinischen Studien als wirksames Antiarrythmikum herausgestellt und zeigte zudem positive Effekte auf die Inzidenz und Sterblichkeit von akuten Myokardinfarkten (ATHENA-Studie). In verschiedenen Forschungsarbeiten konnte nachgewiesen werden, dass Dronedaron in der Frühphase nach einem akuten Myokardinfarkt eine Reduktion der Infarktgröße bewirken kann. Im Gegensatz dazu scheinen Patienten mit schwerer struktureller Herzerkrankung bezüglich ischämischer Ereignisse nicht von einer Dronedarontherapie zu profitieren (PALLAS-Studie).
In dieser Arbeit sollte unter Nutzung des Schweins als Modellorganismus geklärt werden, ob im Langzeitverlauf vier Wochen nach einem akuten Myokardinfarkt protektive Effekte Dronedarons auf die Infarktgröße und die kardiale Funktion nachgewiesen werden können. Desweiteren wurden mithilfe ventrikulärer Gen- und Proteinexpressionsanalysen Dronedaroneffekte in gesundem Myokard, Infarktgrenze und Infarktnarbe auf molekularbiologischem Level untersucht.
Für den experimentellen Myokardinfarkt wurde mithilfe eines Ballonkatheters der rechte Ramus interventricularis anterior distal des ersten Septalastes für 90 Minuten verschlossen. Nach 4-wöchiger Infarktheilung wurden die Herzen explantiert und Gewebsproben für die Expressionsanalysen entnommen. Die Größe der Infarktnarbe wurde an den formalinfixierten Herzen mithilfe der MRT-Bildgebung bestimmt. Genexpressionsprofile wurden mittels RNA-Microarray und anschließender Validierung mittels RT-qPCR, Proteinexpressionsprofile mittels 2D-DIGE-Analyse und anschließender massenspektrometrischer Proteinidentifizierung erstellt.
Die Infarktgröße wurde durch die Dronedarontherapie nicht signifikant beeinflusst (Kontrolle vs. Dronedaron: 10,1 % vs. 9,2 %, n.s.). Das Schlagvolumen der dronedaronbehandelten Tiere zeigte im Gegensatz zu den Kontrolltieren vier Wochen nach Infarzierung keine signifikante Reduktion. Enddiastolisches Volumen, Ejektionsfraktion sowie Serummarker zeigten keine Unterschiede zwischen den Versuchsgruppen.
In den Expressionsanalysen konnten insbesondere in der Infarktgrenze Effekte der Dronedarontherapie beobachtet werden. Es kam zu einer Expressionssteigerung von TGFβ3, der TGFβ-Rezeptoren 1 und 2 sowie der TGFβ-bindenden Proteine LTBP1 und 2. Die vermehrte Aktivierung des TGFβ-Signalings zeigte sich auch in einer Expressionssteigerung matrizellulärer Proteine, darunter Thrombospondin 1 und 2, Periostin und Fibronektin, sowie diverser extrazellulärer Matrixproteine, v.a. Kollagen-Subtypen.
Die Aktivierung des TGFβ-Signalings sowie die Expressionssteigerung TGFβ-induzierter matrizellulärer Proteine in der Infarktgrenze begünstigen durch antiinflammatorische Effekte und Stimulation der Kollagensynthese die Infarktheilung sowie die Stabilisierung des Narbengewebes. Die Proteine Thrombospondin 1 und 2 verhindern zudem eine Expansion des Infarktes in gesunde Myokardareale. Desweiteren kann insbesondere Periostin die Kardiomyozytenproliferation im infarzierten Myokard stimulieren. So können das TGFβ-Signaling sowie matrizelluläre Proteine zu einer Verbesserung der kardialen Funktionalität nach akutem Myokardinfarkt beitragen. Es ist vorstellbar, dass Calcium-abhängige Mechanismen in Kardiomyofibroblasten die dronedaronabhängige gesteigerte Aktivierung des TGFβ-Signalings und als Folge der matrizellulären Proteine vermitteln.
Die Aufrechterhaltung des Schlagvolumens des linken Ventrikels durch die Dronedarontherapie vier Wochen nach einem Myokardinfarkt spricht für einen Erhalt der systolischen Kontraktionskraft des Herzens. Auch wenn keine signifikante Reduktion der Infarktgröße festgestellt werden konnte, deuten die gefundenen Ergebnisse auf eine protektive Wirkung von Dronedaron auf kardiale Funktionalität und die Infarktheilung bei ansonsten gesunden Patienten hin. Bei Patienten mit bereits strukturell vorgeschädigtem Herzen beispielsweise im Sinne einer schweren Herzinsuffizienz könnte die gefundene vermehrte Aktivierung des TGFβ-Signalings zu einer Verschlechterung der Prognose führen, was die Ergebnisse der PALLAS-Studie erklären könnte.
The development of the two main types of diabetes mellitus, type 1 and type 2 (T1D, T2D), is closely associated with the formation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in insulin-secreting pancreatic β-cells. In T1D, β-cell death
is triggered by proinflammatory cytokines, which mainly lead to the formation of ROS
in mitochondria and RNS in the cytosol. Pancreatic β-cells are extraordinarily sensitive
to oxidative stress due to their low glutathione peroxidase and catalase expression.
Thus, hydrogen peroxide (H2O2) cannot be detoxified, neither sufficiently, nor rapidly.
H2O2 itself is a rather weakly reactive ROS but can react in the Fenton reaction to form
highly reactive hydroxyl radicals (●OH), that can damage cells in a variety of ways and
induce cell death. The cell and its organelles are bounded by biological membranes
that differ in their permeability to H2O2. Aquaporins (AQPs) are water-transporting
transmembrane proteins, and some isoforms have been shown to facilitate a bidirectional transport of H2O2 across cellular membranes in addition to water. The role of
AQP8 was investigated in an insulin-producing cell model by stably overexpressing
AQP8 (AQP8↑) and by a CRISPR/Cas9-mediated AQP8 knockout. However, AQP8
proved to be an essential protein for the viability of the insulin-producing RINm5F cells, and so we established a tet-on-regulated AQP8 knockdown (AQP8 KD). Our results highlight that AQP8 is involved in H2O2 transport across the plasma and mitochondrial membranes, and that AQP8 expression gets upregulated by proinflammatory cytokines (in vitro) and in an acutely diabetic rat model (in vivo). Furthermore, it was shown that the increased proinflammatory cytokine toxicity is due to enhanced mitochondrial oxidative stress, because H2O2 cannot be efficiently transported in AQP8 KD cells and ●OH
are increasingly generated. Caspase activity then raises, and apoptosis is increasingly
induced coupled with a proportion of ferroptosis-mediated cell death because of a concomitant decrease in nitric oxide (NO●) concentration. In conclusion, AQP8 is localized in the plasma and mitochondrial membrane of insulin-producing RINm5F cells, where it is involved in H2O2 transport. In T1D, AQP8 plays an important role in the transport of H2O2 from the mitochondrial matrix to the cytosol so that the concentration is lowered in the mitochondria. This wider distribution of H2O2 may ease the inactivation of H2O2.
Vorhofflimmern (VHF) ist die häufigste Herzrhythmusstörung im Erwachsenenalter. In den kommenden Jahren und Jahrzehnten werden die Prävalenz und Inzidenz von Vorhofflimmern weiter zunehmen. Die VHF-assoziierten Pathomechanismen sind nicht vollständig geklärt. Derzeitige Therapieansätze sind oft nur zeitlich begrenzt wirksam, mit starken Nebenwirkungen behaftet und können aktuelle Beschwerden der Patienten zwar eindämmen, ein Fortschreiten der Krankheit aber nicht aufhalten. Daher ist es notwendig, weitere Untersuchungen auf Ebene der Zellregulation und Zellkommunikation zu fördern, um das Wissen über Entwicklung, Progression und Reversibilität von VHF-assoziierten Remodeling-Prozessen zu erweitern und neue therapeutische Interventionspunkte zu identifizieren.
VHF-induzierte atriale Remodeling-Prozesse werden maßgeblich und zum Teil ursächlich durch reversible Veränderungen der Protein-Phosphorylierung verursacht. In vorherigen Arbeiten des Labors konnten bereits im Rahmen von Phosphoproteom-Analysen Proteine in HL-1 Zellen detektiert werden, die nach Rapid Pacing (RP) auffällig differentiell reguliert waren. In der vorliegenden Arbeit erfolgte die Analyse und Verifizierung dieser Proteine nach kontinuierlichem und Intervall-RP von HL-1 Zellen auf mRNA- und Proteinebene. Der Vergleich der im HL-1-Modell erhaltenen Daten mit denen, die aus atrialem Gewebe von Patienten in SR und VHF gewonnen wurden, soll Rückschlüsse auf klinisch und therapeutisch potenziell relevante Signalwege und Pathomechanismen bei VHF geben. Es stellte sich heraus, dass RP keinen Einfluss auf die mRNA-Expression von DDR2, OBSCN, SGK223, MARK2 und eingeschränkt auf JPH2 und GPX1 in HL-1 Zellen hatte. Lediglich nach Intervall-RP war die mRNA-Menge von JPH2 erhöht und von GPX1 reduziert. Sowohl nach kontinuierlichem als auch nach Intervall-RP war die Genexpression der Proteine SNIP1 und SBK2 stark reduziert. Gleichzeitig stellte sich eine ebenso stark reduzierte SBK2 Proteinexpression sowohl in den HL-1 Zellen als auch im humanen Vorhofgewebe bei VHF dar. In der immunhistochemischen Untersuchung atrialer Gewebeschnitte präsentierte sich SBK2 im Zytoplasma, entlang der Zellmembran und vesikelartig im perinukleären Raum der humanen Kardiomyozyten. RP und VHF hatten keinen Einfluss auf die Gen- und Proteinexpression von MARK2 in den HL-1 Zellen und im humanen Vorhofgewebe. In der Untersuchung der Protein-Phosphorylierung von MARK2 an Thr208 ergaben sich allerdings Diskrepanzen zwischen den murinen und humanen Zellen. Mithilfe der Immunfluoreszenz wurde in den humanen Kardiomyozyten für MARK2 eine regelmäßige Anordnung in longitudinaler Ausrichtung und zwischen den Z-Linien nachgewiesen. Eine VHF-abhängige durch Phosphorylierung vermittelte subzelluläre Translokation von MARK2 konnte ausgeschlossen werden. Diese RP-assoziierten Veränderungen im Phosphoproteom sind am atrialen Remodeling, bei der Erhöhung des oxidativen Stresses und der Aktivierung des TGF-β- und NF-κB-Signalwegs involviert. Des Weiteren wird ein Zusammenhang zwischen MARK2 und dem Wnt-Signalweg vermutet.
In weiterführenden Arbeiten sollten Untersuchungen der spezifischen Effekte von Protein-Phosphorylierungen und der Protein-Protein-Interaktionen erfolgen. Da zu den kardialen Funktionen von SBK2 keine Daten vorliegen, könnten mithilfe des Knock-outs von SBK2 (Knock-out Maus oder CRISPR-Cas9 Knock-out in HL-1 Zellen) grundlegende Aussagen zu dessen Rolle im gesunden Herzen oder bei VHF erhalten werden.
Herz-Kreislauf-Erkrankungen gehören heute zu den Hauptursachen für Tod und Invalidität in den Industrie- und Entwicklungsländern. Nach Angaben der Weltgesundheitsorganisation betrug die Zahl der durch Herz-Kreislauf-Erkrankungen verursachten Todesfälle im Jahr 2016 17,9 Millionen. Das umfasst mehr als 31 % aller weltweiten Todesfälle, die zu 85 % auf einen Herzinfarkt bzw. Schlaganfall zurückzuführen sind.
Für das Outcome der Patienten nach einem Myokardinfarkt ist die Größe der Infarktnarbe von prognostischer Bedeutung. Nach therapeutischer Rekanalisation des betroffenen Herzkranzgefäßes entsteht durch diesen aktiven Prozess eine Myokardnarbe. Durch Perfusionsmanöver oder die Gabe verschiedener Pharmaka, vor wie nach einem Infarkt, lässt sich die Ausprägung der Narbe beeinflussen und die Größe der Narbe reduzieren. Vorangegangene Arbeiten haben gezeigt, dass die Gabe eines PDE-5-Inhibitors zu einem intrazellulären Anstieg des cGMP-Levels und zum Myokardschutz führt.
Ziel dieser Arbeit war es, die Rolle des second Messengers cGMP in der postulierten Signalkaskade der Postkonditionierung weiter zu untersuchen. Dazu kamen zwei Verfahren zur Modulierung des cGMP Spiegels nach einem Myokardinfarkt zur Anwendung: zum einen die gezielte Steigerung der Synthese von cGMP und zum anderen die Inhibition eines möglichen Auswärtstransports des Moleküls via ABC-Transporter.
In ex-vivo perfundierten Rattenherzen konnte gezeigt werden, dass BAY 58-2667 im hohen Maße protektierend auf das ischämische Herz wirkt, wenn es direkt vor der Reperfusion verabreicht wird. Dieser Schutz ist unabhängig von NO, steht jedoch in Abhängigkeit von zwei weiteren Elementen der untersuchten Signalkaskade, der PKG und dem mKATP-Kanal. Die Infusion von BAY 58-2667 führte zur Erhöhung der intrazellulären cGMP Level im kardialen Gewebe und ist darüber hinaus mit einem akzeptablen hämodynamischen Profil verbunden.
Ein weiterer Teil dieser Arbeit beschäftigte sich mit der Modulation der intrazellulären cGMP Konzentration durch Supression entsprechender Auswärtstransporter. Durch den Einsatz einer speziellen siRNA-Technologie sollte deren Expression inhibiert werden. Die spezifisch gegen ABCC 4 und 5 gerichteten siRNAs wurden durch einen retroviralen Vektor in die Zellen eingebracht, was eine effektive Suppression des Proteins auf mRNA-und Proteinebene zur Folge hatte. Dabei zeigte das Ergebnis auf, dass die retrovirale Transfektion von siRNA eine geeignete Möglichkeit zur gezielten Ausschaltung von ABCC 4 und 5 sein kann.
Die Ergebnisse der vorliegenden Arbeit liefern wichtige mögliche Ansatzpunkte für die pharmakologische Behandlung von Patienten mit einem akuten Myokardinfarkt. Die gezielte Steuerung des cGMP Spiegels deutet ein großes klinisches Potential an. Der Einsatz von BAY 58-2667 erwies sich im Hinblick auf die Limitierung der Infarktgröße in der Reperfusion im Menschen als vielversprechend.
Zusammenfassung
Im Rahmen immunologischer Erkrankungen, wie Autoimmun- oder inflammatorischer Erkrankungen, Erkrankungen des zentralen Nervensystems oder Krebserkrankungen spielen Peptidasen eine wichtige Rolle [1, 2]. Die Exopeptidasen Membran-Alanyl-Aminopeptidase N (APN/CD13) und Dipeptidylpeptidase IV (DP IV/CD26) sind essentiell für die Regulation vieler biologischer Prozesse, insbesondere für die Autoimmunität und die Inflammation [3-5]. Literaturdaten und Vorarbeiten verschiedener Arbeitsgruppen belegen immunmodulatorische Eigenschaften von Inhibitoren der enzymatischen Aktivität der APN. Sowohl in vitro als auch in verschiedenen Krankheitsmodellen der Maus in vivo, zeigten sich therapeutisch relevante immunsuppressive Effekte dieser Inhibitoren [7, 11]. Mechanistisch liegen diesen positiven Wirkungen unter anderem eine Hemmung der Produktion und Sekretion proinflammatorischer Zytokine, sowie die Verstärkung der Produktion und Sekretion immunsuppressiver Zytokine zu Grunde [5]. Die Inhibitoren scheinen auch einen immunmodulatorischen Einfluss auf den Wnt Signalweg zu haben, der als Signaltransduktionsweg wichtige Aufgaben in der Regulation von Zellmigration, Polarität, interzellulärer Kontakte und für die frühe Embryonalentwicklung übernimmt [47]. Im Rahmen dieser Arbeit wurde sowohl der Einfluss verschiedener Inhibitoren der APN als auch des genetischen CD13-Knockouts in Mäusen auf die Aktivierung verschiedener Mikrogliazellpopulationen und auf die Expression von Komponenten des Wnt Signalweges untersucht. In Abhängigkeit von der Aktivierung war sowohl eine gesteigerte Expression proinflammatorischer Zytokine, als auch eine Hemmung der Komponenten des Wnt Signalweges in BV2 Mikrogliazellen zu beobachten. In BV2 Mikrogliazellen konnten keine signifikanten Einflüsse durch die Inhibitoren A1.002 und IP10.C9 detektiert werden. Lediglich durch den CD13-Antikörper My 7 konnten immunsuppressive Effekte in aktivierten BV2 Mikrgoliazellen beobachtet werden. In CD13-Knockout Mäusen konnte eine signifikante Reduktion der Wnt 10b positiven Mikrogliazellen gezeigt werden. In der Zusammenschau aller Ergebnisse lassen sich regulatorische Zusammenhänge zwischen der Aktivität der Mikrogliazellen, sowie der APN und dem Wnt Signalweg aufzeigen. Daher erscheinen weiterführende Analysen in primären isolierten Mikrogliazellen sinnvoll, um die Bedeutung von Inhibitoren der APN in neuronalen Zellen zu ermitteln. Dabei spielen nicht nur die Inhibitoren selbst, sondern auch deren Inkubationsbedingungen im Verhältnis zur LPS-vermittelten Zellaktivierung eine entscheidende Rolle.
Zusammenfassung:
Zielstellung dieser Arbeit war es, den Einfluss von „lone atrial fibrillation“ auf die extrazelluläre und intrazelluläre Signaltransduktion des TGF-beta1-Signalweges zu untersuchen. Dazu wurde das Modell des „acute rapid pacing“ unter Verwendung muriner HL-1-Zellen genutzt. Weiterhin wurde die Einflussnahme von Irbesartan auf die festgestellten Veränderungen geprüft.
„Acute rapid pacing“ führte zu einer erhöhten mRNA-Expression profibrotischer Faktoren wie CTGF, SGK1 und TGF-beta1. Marker für kardiale Schädigung wie MSTN und FSTL3 zeigten ebenfalls eine Erhöhung des mRNA-Gehaltes nach „acute rapid pacing“. Kardial protektive Faktoren wie FSTL1 fanden sich im mRNA-Gehalt dagegen erniedrigt. Auf Proteinebene zeigte sich eine Mehrexpression des Stressmarkers GSK. Die Verwendung von Irbesartan beim „acute rapid pacing“ führte zu einer Reduktion der elevierten mRNA-Gehalte der profibrotischen Faktoren CTGF, SGK1 und TGF-beta1. Gleichfalls sank durch Irbesartan der erhöhte mRNA-Gehalt der kardialen Schädigungsmarker MSTN und FSTL3. Auf den mRNA-Gehalt des kardioprotektiven FSTL1 hatte Irbesartan keinen bedeutenden Einfluss. Auf Proteinebene konnte eine Minderexpression des Stressmarkers GSK festgestellt werden, wenn „rapidly paced“ Zellen mit Irbesartan inkubiert worden waren. Für andere untersuchte, mutmaßliche Modifikatoren wie Endoglin und FSTL5 lassen sich keine relevanten Aussagen ableiten.
In Bezug auf den weiteren Signalweg sprechen die Ergebnisse der mRNA-Werte von ALK1 (Acvrl1), ALK2 (Acvr1) und ALK5 (Tgfbr1) nach „acute rapid pacing“ für eine Aktivierung des Phospho-Smad-1/-5/-8-Schenkels. Die Ergebnisse der Proteinexpression von Phospho-Smad-1/-5/-8 und phospho-Smad-2 nach „acute rapid pacing“ bzw. Inkubation mit TGF-beta1 stützen diese These.
Tgfbr2-mRNA konnte in HL-1-Zellen wiederholt nicht nachgewiesen werden, wurde jedoch in Kardiozyten von Mus musculus detektiert. Dies spricht für relevante Unterschiede im kanonischen TGF-beta-Signalweg zwischen HL-1-Zellen und nativem Mausgewebe.
Die untersuchten Zielgene des TGF-beta-Signalwegs – ID1, ID2 und ID3 – zeigten in Bezug auf ihre mRNA nach „acute rapid pacing“ ein differenziertes Verhalten mit Anstieg von ID1 und Absenkung von ID2 und ID3, was zum Prozess eines Remodelings passt. Irbesartan führte in Bezug auf die mRNA der genannten Zielgene nach „acute rapid pacing“ zu keiner signifikanten Änderung.
Vorhofflimmern ist die häufigste Herzrhythmusstörung des Menschen. Die Generierung neuen Wissens über Prozesse der Zellregulation und Zellkommunikation kann unser Verständnis über zugrundeliegende Pathomechanismen dieser Erkrankung erweitern und bei der Entwicklung neuer Therapiestrategien helfen. Diese Phosphoproteom-Analyse beschreibt Veränderungen des Phosphorylierungsstatus von Proteinen in HL-1 Kardiomyozyten in Abhängigkeit verschiedener Rapid Atrial Pacing (RAP) Stimulationsprotokolle. Um den Einfluss von Regenerationsphasen, wie es sie z. B. auch beim paroxysmalen Vorhofflimmern gibt, auf den Phosphorylierungsstatus von Proteinen zu untersuchen, wurden die Zellen nicht nur kontinuierlich, sondern auch in Intervallen RAP-stimuliert. Insgesamt konnten in dieser Arbeit 9626 Phosphorylierungen in 3463 Proteinen identifiziert werden, von denen 295 Phosphorylierungen in 261 Proteinen signifikant verändert waren. Stark veränderte Phosphorylierungen konnten z. B. in den Proteinen DOCK7 und MARK2 für kontinuierlich stimulierte HL-1 Zellen und OBSCN und JPH2 für Intervall-stimulierte HL-1 Zellen gefunden werden. Neben spezifisch regulierten Proteinphosphorylierungen konnten auch solche beschrieben werden, deren Regulation für kontinuierliches bzw. Intervall-RAP identisch waren (Overlap). Vertreter dieser Gruppe waren z. B. Phosphorylierungen der Proteine KCNH2 und ABLIM3. Eine Vielzahl beobachteter Unterschiede bezüglich der Richtung und Stärke der Regulation von Proteinphosphorylierungen zwischen kontinuierlich und Intervall- stimulierten HL-1 Zellen ist dabei ein deutliches Indiz für einen bestehenden Einfluss der Regenerationsphasen auf die Modulation zellulärer Signalwege. Bei der Zuordnung veränderter Protein-Phosphorylierungen zu definierten Signalwegen zeigte sich das Netrin-Signaling als signifikantes Beispiel für Signalwege, die sowohl bei kontinuierlich als auch bei Intervall-stimulierten HL-1 Zellen einer Modulation unterliegen. Veränderungen in der Regulation der Proteinphosphorylierung bzw. der Proteinexpression konnten dabei vor allem in einem bestimmten Teil des Signalweges identifiziert werden, an dem die Proteine Netrin, DCC-Rezeptor, NCK, RAC und ABLIM beteiligt sind.