Refine
Year of publication
- 2020 (2)
Document Type
- Doctoral Thesis (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- Aujeszky-Krankheit (1)
- CRISPR/Cas-Methode (1)
- Capsid (1)
- Herpesviren (1)
- Herpesvirus suis (1)
- Kapsid (1)
- Kernexport (1)
- Kernhülle (1)
- Monoklonaler Antikörper (1)
- NEC (1)
Institute
Der Kernexport neusynthetisierter Kapside stellt einen Schlüsselprozess in der Herpesvirus-Replikation dar. Die zugrundeliegenden Mechanismen dieser Vesikel-vermittelten Translokation sind jedoch noch nicht vollständig verstanden. Der nuclear egress wird dabei maßgeblich von zwei viralen Proteinen dirigiert, die in PrV und HSV-1/-2 als pUL31 und pUL34 bezeichnet werden und in allen Herpesviren konserviert sind. Beide Proteine interagieren an der inneren Kernmembran, wo sie den sogenannten nuclear egress complex (NEC) bilden. Während pUL34 ein membranständiges Protein in der Kernmembran ist, gelangt das lösliche pUL31 über einen aktiven Transport in den Kern. Obwohl der erste Schritt der Freisetzung aus dem Kern, die Vesikelbildung und Abschnürung an der inneren Kernmembran, schon gut untersucht ist und auch die Kristallstrukturen des NEC für verschiedene Herpesviren ermittelt werden konnte, sind noch viele Fragen offen. So war zu Beginn dieser Arbeit noch unklar wie die Kapside in diese Hüllen rekrutiert werden und welche Rolle die nicht konservierte und offensichtlich flexible N-terminale Domäne von pUL31, die nicht in den Kristallstrukturen dargestellt werden konnte, für die Regulierung dieses Prozesses spielt. So konzentrierte sich diese Arbeit auf die Fragen, wie die Kapside mit dem NEC interagieren (Paper I und II) und wie der pUL31-N-Terminus diesen ungewöhnlichen Transportweg beeinflusst (Paper III).
Paper I und II: Untersuchungen zur Nukleokapsid/NEC Interaktion
Unklar ist, wie der NEC mit seiner Fracht, den Nukleokapsiden, interagiert. Auf Grundlage der vorhandenen Kristallstrukturen des Komplexes unterschiedlicher Herpesviren wurde eine Interaktionsdomäne in pUL31 postuliert und angenommen, dass dies mittels elektrostatischer Wechselwirkungen erfolgt. Um dies näher zu untersuchen, wurden in dieser Arbeit geladene Aminosäuren, die als mögliche Interaktionspartner in Frage kommen, zu Alanin mutiert. Die so generierten pUL31 Mutanten wurden, nach Transfektion entsprechender Expressionsplasmide in Kaninchennierenzellen (RK13), auf ihre Lokalisation und nach Koexpression mit pUL34 auf Interaktion getestet. Die Funktionalität der mutierten Proteine während der Virusreplikation wurde mit Hilfe stabiler Zelllinien nach Infektion mit PrV-∆UL31 untersucht. Über elektronenmikroskopische Analysen wurde der Einfluss auf den Kernexport im Detail betrachtet. Hierbei konnte einem konservierten Lysin an Position 242 in PrV pUL31 im Prozess der Kapsidumhüllung eine Schlüsselrolle zugeordnet werden. Dieses Lysin befindet sich im membrandistalen Bereich des NECs, in der Alphahelix H10 von PrV pUL31. Die Substitution des K242 zu Alanin führte zu einem Abschnüren und einer Akkumulation leerer, Virushüllen-ähnlicher Vesikel im PNS, obwohl reife Kapside im Kern und in unmittelbarer Nähe zu den Akkumulationen vorhanden waren. Dies führte zu der Hypothese, dass die Ladung des Lysins direkt an der Interaktion mit dem Kapsid beteiligt ist (Paper I).
Obwohl das Lysin 242 in der Struktur des Dimers oberflächenexponiert erschien, zeigten Modellierungen im NEC Oligomer, dass diese Aminosäure vermutlich zu tief in der Struktur verborgen ist um als direkter Interaktionspartner in Frage zu kommen. Um die im vorherigen Paper aufgestellte Hypothese zu verifizieren oder auch zu widerlegen, wurde das Lysin nicht nur durch Alanin, sondern auch durch andere nicht geladene, sowohl positiv als auch negativ geladene oder in ihrer Größe variierende Aminosäuren substituiert (Paper II).
Die neu generierten Substitutionsmutanten wurden nach Transfektion der Expressionsplasmide auf ihre Lokalisation und nach Kotransfektion mit pUL34, auf ihre Interaktion untersucht. Die Funktionalität der mutierten Proteine wurde ebenfalls mit Hilfe stabil exprimierender Zelllinien analysiert. Die vorliegenden Phänotypen wurden weiter mittels elektronenmikroskopischer Analysen bestimmt. Es stellte sich heraus, dass unabhängig von der vorhandenen Ladung der Aminosäure an Position 242 der Kernexport signifikant beeinträchtigt wurde. In Strukturanalysen der einzelnen Mutanten zeigte sich, dass vielmehr die Ausrichtung und Größe der Seitenkette der ersetzten Aminosäure entscheidend war. So störte beispielsweise die Substitution zu Serin und Tyrosin, die die Lage der Seitenketten des ursprünglich vorliegenden Lysins imitierten, die Funktion des pUL31 am wenigsten und die Titer erreichten fast Wildtypwerte. Dagegen führten Substitutionen zu deutlich längeren Aminosäuren, wie Glutaminsäure oder Arginin, zu massiven Beeinträchtigungen des nuclear egress. Allerdings führte keine der Substitutionen zu einem unkontrollierten Abschnüren von Vesikeln ohne Aufnahme eines Kapsids an der inneren Kernmembran.
Die hier gezeigten Ergebnisse entkräfteten die Annahme einer elektrostatischen Interaktion über pUL31 K242 mit den Nukleokapsiden in PrV. Vielmehr deuteten sie auf eine strukturell basierte Störung der Kapsidaufnahme in die Vesikel hin (Paper II).
Mittels serieller Passagen von Virusmutanten die das UL31 mit der K242A Substitution exprimierten, wurde nach möglichen kompensatorischen (second-site) Mutationen gesucht, die den Defekt ausgleichen und darüber hinaus Aufschluss auf die molekularen Ursachen ziehen lassen.
Die generierten Virusrekombinanten erreichten bereits nach ca. 10 Passagen Wildtpy-ähnliche Titer. Aus den Passagen wurden verschiedene Isolate charakterisiert. Es zeigte sich zwar keine Reversion zum Lysin 242, vielmehr waren jedoch entweder weitere Mutationen in pUL31 oder in pUL34 zu finden. Während die detektierten pUL34 Mutationen zu einem späteren Zeitpunkt charakterisiert werden müssen, wurden die second-site mutierten pUL31 Proteine auf Lokalisation, Kolokalisation und Kompensation des K242A Defektes getestet. Die Ergebnisse bestärkten die Annahme eines Strukturdefektes durch K242A. Darüber hinaus konnten durch Rückmutation des K242A Defektes in den second-site mutierten pUL31 zwei Helices bestätigt werden (H5 und H11), die ähnlich der H10 einen starken Einfluss auf den Kernexport besitzen.
Die erhaltenen Ergebnisse zeigten, dass die Aminosäure an Position 242 nicht direkt mit den Nukleokapsiden interagiert, dass eingeführte Mutationen jedoch die Umorganisation des NEC-Oligomers, welche offensichtlich notwendig für die effiziente Kapsidumhüllung an der inneren Kernmembran ist, stört und so den nuclear egress inhibiert (Paper II).
Es zeigte sich, dass sich die Struktur-Funktions-Beziehungen in den NECs komplexer darstellen als vermutet. Die Ergebnisse dieser Arbeit können zwar nicht den Mechanismus des Kapsidexports bzw. der Kapsidbindung und -inkorporation aufklären doch zeigen sie, dass die Interaktionen der NECs miteinander sehr viel komplexer aber auch wesentlich flexibler sind als zunächst angenommen.
Paper III: Untersuchung der N-terminalen Domäne von PrV pUL31
Neben einem Kernlokalisationssignal (NLS) beherbergt der N-terminus verschiedener pUL31 Homologer auch zahlreiche vorhergesagte Phosphorylierungsstellen, die an der Regulation des Kernexportes beteiligt sind bzw. sein könnten. Dieser flexible N-terminale Bereich hat in PrV pUL31 eine Länge von 25 Aminosäuren, wobei auffallend viele basische Aminosäuren in Clustern und verschiedene mögliche Phosphorylierungsstellen enthalten sind. Computer-unterstütze Analysen (NLStradamus) erkennen in der Aminosäuresequenz ein bipartites NLS (AS 5-20). Um die Rolle des N-terminalen Bereiches in PrV pUL31 näher zu untersuchen, wurde dieser schrittweise verkürzt und die basischen Aminosäuren, sowie die möglichen Phosphorylierungsstellen, durch gerichtete Mutagenese durch Alanin ersetzt. Getestet wurden diese Mutanten nach Transfektion der entsprechenden Expressionsplasmide in RK13 Zellen auf ihre Lokalisation und, nach Koexpression von pUL34, auf Interaktion und der Umorganisation der Kernmembran. Über stabil-exprimierende Zelllinien und nach Infektion mit der UL31 negativen Virusmutante (PrV-∆UL31) wurde die Funktionalität in eplikationsassays und auch ultrastrukturell charakterisiert. Erstaunlicherweise zeigte sich, dass weder das bipartite NLS noch die vorhergesagten Phosphorylierungsstellen eine entscheidende Rolle spielen. Vielmehr konnte der größte Teil des N-Terminus ohne sichtbaren Funktionsverlust deletiert werden, sofern mindestens ein Cluster basischer Aminosäuren in dieser Region erhalten blieb. Die Ergebnisse zeigten, dass der basische Charakter dieser Region entscheidend für die korrekte Lokalisation, sowie für die Bildung und Funktionalität des NEC ist. Weiterhin konnte gezeigt werden, dass die Phosphorylierung im N-Terminus von PrV pUL31, wie auch die roteinkinase pUS3, zwar nicht essenziell für die Freisetzung der Nukleokapside aus dem perinukleären Spalt sind, jedoch diesen Prozess unterstützen (Paper III).
Herpesviruses are enveloped DNA viruses which are dependent on two fusion steps for efficient replication in the host cell. First, they have to fuse their envelope with the cellular plasma membrane or with the vesicle membrane after endocytic uptake to enter the host cell and second, they have to export the newly generated nucleocapsids from the site of assembly to the cytoplasm by fusion of the primary virion envelope with the outer nuclear membrane (ONM). The main goal of this project was to provide a better understanding of how herpesvirus capsids exit the nucleus. On the one hand this thesis aimed at finding cellular proteins involved in nuclear egress (Paper I), while on the other the focus was on further characterization of the viral nuclear egress complex (NEC, Paper II) and its interaction with the capsid (Paper III).
It is the hallmark of viruses, including herpesviruses, to hijack host cell proteins for their efficient replication. Some of those interactions are well characterized, while others might not yet have been discovered. In the last step of the nuclear egress, where the primary virion membrane fuses with the ONM, most likely a cellular machinery is involved. The presented work focused on Torsin, the only known AAA+ ATPase localizing in the endoplasmic reticulum and the perinuclear space (PNS). For this, the effect of overexpression of WT and mutant proteins, as well as CRISPR/Cas9 generated knock-out cell lines, on PrV replication was analyzed. Neither single overexpression nor single knockouts of TorA or TorB had any significant effects on virus titers. However, infection of TorA/B double knockout cells revealed reduced viral titers and an accumulation of primary virions in the PNS at early infection times, indicating a delay in nuclear egress.
The process of nuclear egress has been intensively investigated without revealing all its details. To address some of the missing aspects we generated monoclonal antibodies (mAbs) against the NEC and its components (pUL31 and pUL34) for a better visualization of the process in transfected as well as infected cells. These mAbs provide a useful tool for future analyses.
The publication of the NEC crystal structure formed the basis for intensive research on the molecular details of the NEC formation and its interaction with the nucleocapsid. Recently, our lab showed that lysine (K) at position 242 in the membrane-distal part of pUL31 is crucial for incorporation of the nucleocapsid into budding vesicles. Replacing K by alanine (A) resulted in accumulations of vesicles in the PNS, while mature capsids were not incorporated. To test whether this is due to electrostatic interference or structural restrictions we substituted K242 by different aa to determine the requirements for nucleocapsid uptake into the nascent primary particles. To analyze whether the defect of pUL31-K242A can be compensated by second-site mutations, PrV-UL31-K242A was passaged and mutations in revertants were analyzed. Different mutations have been identified compensating for the K242A defect. A considerable number of mutations indicates that the NEC is much more flexible than previously thought. Further, we gained information that the K at position 242 is not directly involved in capsid interaction, while it is more likely involved in rearrangements within the NEC coat.