92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.) [See also 80A30]
Refine
Document Type
- Doctoral Thesis (3)
Language
- German (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- Pharmakokinetik (2)
- pharmacokinetics (2)
- ABC-Transporter (1)
- Aufnahmetransporter (1)
- Ciclosporin (1)
- Colchicin (1)
- Cremophor EL (1)
- Cyclodextrine (1)
- HEK (1)
- In-vitro-Kultur (1)
Institute
Die Physiologie des Magens mit den unterschiedlichen Gegebenheiten im proximalen und distalen Magen stellt einen relevanten Einflussfaktor auf die Pharmakokinetik von oral applizierten Wirkstoffen dar. Innerhalb der peroralen Pharmakotherapie nimmt die Sondenapplikation von Arzneimitteln dabei eine Sonderrolle ein, da je nach Lokalisation des Sondenendes die Applikation tendenziell eher in proximale oder distale Anteile des Magens erfolgt. Ziel dieser Arbeit war die Untersuchung der Pharmakokinetik bei Sondenapplikation hinsichtlich der Variablen Sondenlage‚ Nahrungsaufnahme und Nüchternmotilität. Hierzu wurde in einer kontrollierten, randomisierten, drei-armigen Cross-Over-Studie an zwölf gesunden, männlichen Probanden 540 mg einer Paracetamol-Suspension über einen Zeitraum von sechs Stunden jeweils in den distalen und proximalen Magen infundiert. Unsere Ergebnisse konnten zeigen, dass die Bedingungen „proximale Applikation“ und „Nahrungsaufnahme“ die Wahrscheinlichkeit einer Retention im proximalen Magen erhöht. Merkmale hierfür waren größere Abweichungen der Invasionskinetik von der Applikationsrate im Sinne einer verspäteten Anflutung, vermehrt Schwankungen der Invasionsrate und mehr Nachflutungen in der Eliminationsphase. Umgekehrt ging die distale Applikation mit einer größeren Kontinuität der Invasion einher. Hinsichtlich der Invasionskinetik häuften sich bei Nahrungskarenz und proximaler Sondenlage Merkmale, die für einen Einfluss der interdigestiven Motilität auf die Pharmakokinetik sprechen. Limitiert wurde die Aussagekraft zum Einfluss der Nüchternmotilität durch das Fehlen einer simultanen Aufzeichnung der Motilität, zum Beispiel mittels elektrischer Impedanzmessung. Die angewandte Methodik mit kontinuierlicher Infusion der Prüfsubstanz, regelmäßigen Messungen der Serumkonzentration und Berechnung der Invasionskinetik mittels schneller Fouriertransformation erwies sich zur Untersuchung der Fragestellung als gut geeignet und kann als Grundlage zukünftiger Forschungen dienen.
Moderne Arzneistoffentwicklungsprogramme erbringen in zunehmendem Maße schwer wasserlösliche Arzneistoffe. Dies bringt pharmazeutisch-technologische und biopharmazeutische Probleme für deren Formulierung mit sich. Eine ausreichende Löslichkeit ist notwendig für die Herstellung von intravenös zu applizierenden Zubereitungen und die Durchführung von in vitro Untersuchungen z.B. im Rahmen der Arzneistoffentwicklung. Eine schlechte Löslichkeit kann die Resorption verzögern und so die Bioverfügbarkeit von oral verabreichten Arzneistoffen beeinträchtigen. Lösungsvermittler bieten eine Möglichkeit, die Wasserlöslichkeit von Arzneistoffen zu verbessern und finden breite Anwendung in vielen zugelassenen Arzneimitteln und v.a. in der präklinischen und klinischen Entwicklung. Trotz des Anspruchs der pharmakologischen Inaktivität wurde in der Literatur für verschiedene Lösungsvermittler jedoch ein Einfluss auf die Pharmakokinetik von Arzneistoffen beschrieben. Die Absorption, Verteilung und Elimination eines Arzneistoffes wird zu großen Teilen von Transportproteinen und metabolisierenden Enzymen bestimmt. Als Ursache für die pharmakokinetischen Veränderungen wurde eine Interaktion der Hilfsstoffe mit dem Effluxtransporter P-Glykoprotein (ABCB1) und dem metabolisierenden Enzym Cytochrom P450 (CYP) 3A4 erkannt. Zum Einfluss auf Aufnahmetransporter gab es bisher nur wenige Erkenntnisse für Cremophor EL. Da sie dem Metabolismus und Efflux vorgelagert sind, spielen Aufnahmetransporter eine besondere Rolle. Daher gab es einen speziellen Bedarf an Wissen über den Einfluss von Lösungsvermittlern auf Aufnahmetransporter. In der vorliegenden Arbeit wurde der Einfluss der Lösungsvermittler Polyethylenglykol (PEG) 400, Hydroxypropyl-β-cyclodextrin (HPCD), Solutol HS15 (SOL) und Cremophor EL (CrEL) auf die Aufnahmetransporter organic anion transporting polypeptide (OATP) 1A2, OATP1B1, OATP1B3, OATP2B1 und Na+ / taurocholate cotransporting polypeptide (NTCP) an zellulären Transportermodellen untersucht. PEG 400 hemmte selektiv OATP1A2. HPCD hemmte bei allen Transportern nur die Aufnahme von Substraten mit Sterangrundgerüst vermutlich durch Komplexbildung, stimulierte jedoch die NTCP-abhängige Aufnahme von Bromosulfophthalein (kein Steran). SOL und CrEL hemmten alle Transporter. Für OATP1B1 und NTCP (Hemmung oberhalb der kritischen Mizellbildungskonzentration (CMC)) ist ein mizellares trapping als Ursache wahrscheinlich. Für OATP1A2, OATP1B3 und OATP2B1 (Hemmung unterhalb der CMC) müssen spezifische Mechanismen involviert gewesen sein. Pharmakokinetische Interaktionen mit Hilfsstoffen können also auch auf Ebene der Aufnahmetransporter stattfinden. Im zweiten Teil der Arbeit wurde die in vivo Relevanz der Befunde überprüft. In einer Studie wurde der Einfluss von PEG 400, HPCD und SOL auf die Pharmakokinetik der Modellarzneistoffe Paracetamol, Talinolol, Colchicin und Ciclosporin A nach intravenöser Applikation an Ratten untersucht. Dabei erwies sich keiner der Hilfsstoffe als vollständig inert. Es wurde eine Vielzahl unterschiedlicher Effekte beobachtet. Häufig traten Veränderungen in der AUC, der Halbwertzeit und der Verteilung auf. Grundsätzlich schienen alle in Frage kommenden Mechanismen auch in vivo eine Rolle zu spielen. Die in der Literatur beschriebene Hemmung von Effluxtransport und Phase I Metabolismus konnte bestätigt werden. Die in vitro beobachtete Hemmung von Aufnahmetransportern konnte in vivo belegt werden. Auch unspezifische Mechanismen wie Komplexbildung und mizellares trapping schienen in vivo relevant zu sein. Durch die Überlagerung verschiedener Mechanismen ergab sich jedoch ein sehr komplexes Bild, das sowohl von den Eigenschaften des jeweiligen Hilfsstoffes als auch von denen des Arzneistoffes geprägt war. Daher konnten in den meisten Fällen nur allgemeine Hypothesen zu den möglichen Ursachen der Interaktion aufgestellt werden. Aus demselben Grund ist keine Extrapolation der Daten auf andere Lösungsvermittler und Arzneistoffe im Sinne einer Vorhersage möglich, da die wenigsten Substanzen ausreichend gut charakterisiert sind. Dennoch lässt sich schlussfolgern, dass Lösungsvermittler ein gewisses Interaktions-potenzial besitzen, das sich nicht nur auf ABCB1 und CYP3A4 beschränkt. Damit können sie an Arzneimittelinteraktionen beteiligt sein. Diese Effekte sollten somit auch in der Arzneimittelentwicklung berücksichtigt werden.
Im Laufe der letzten Jahre hat sich herausgestellt, dass Transportproteine einen entscheidenden Beitrag zur Absorption, Verteilung und Elimination zahlreicher Endo- und Xenobiotika leisten. Vor allem die hepatobiliäre Elimination nimmt eine Schlüsselrolle in systemischen Clearance-Prozessen ein. Vor dem Hintergrund, dass immer mehr hochmolekulare und metabolisch stabile Stoffe Eingang in die Arzneistoffentwicklung finden und diese vorwiegend hepatobiliär eliminiert werden, wurde es erforderlich, differenziertere Kompartimentmodelle zu entwickeln, um singuläre Substanzeffekte auf zellulärer Ebene zu untersuchen. Gerade Interaktionen zwischen simultan verabreichten Arzneistoffen können zu erheblichen Nebenwirkungen durch Veränderung pharmakokinetischer Eliminationsprozesse in Kombination mit erhöhter oder eingeschränkter Bioverfügbarkeit führen. Das Ziel der vorliegenden Arbeit war es daher, für die frühe Arzneistoffentwicklung ein In vitro-Modell auf Basis des pharmakokinetischen Standardtiermodells der Ratte zu konzipieren, welches eine einfache Analyse hepatobiliärer Elimination auf indirektem Weg über die Interaktion mit fluoreszierenden Modellsubstraten ermöglicht. Die Zielvorgabe wurde umgesetzt, indem auf Basis literaturbeschriebener Methoden ein In vitro-Rattenhepatozytenmodell etabliert wurde. Hierfür war es zunächst unerlässlich, geeignete Kultivierungsbedingungen zu identifizieren und zu optimieren. Es konnte gezeigt werden, dass primäre Hepatozyten nur befähigt wurden, sich in vitro zu repolarisieren und eine in vivo-ähnliche Morphologie anzunehmen, wenn sie eingebettet zwischen zwei extrazellulären Kollagenmatrices kultiviert wurden. Diese sogenannte Sandwichkultivierung der Zellen und die Supplementierung des Zellkulturmediums mit dem Glukokortikoid Dexamethason erwiesen sich hierfür als wesentliche Faktoren. Die Hepatozyten reformierten sich folglich innerhalb von 96 Stunden unter Ausbildung eines vollständigen und sehr einheitlichen Gallengangssystems, welches nahezu jeden Hepatozyten umschloss. Nach Etablierung der Zellkultur wurden die sandwichkultivierten Hepatozyten hinsichtlich der Proteinexpression, ausgewählte Transportproteine und Cytochrome umfassend, über einen Kultivierungszeitraum von 10 Tagen charakterisiert, um die Validität des Zellsystems zu gewährleisten. Unter Bei-behaltung der optimierten Kultivierungsbedingungen konnte mit zunehmendem Repolarisierungsstatus der Zellen ein Anstieg der apikalen Transportproteinexpression unter Begleitung einer Erhöhung der molekularen Masse der Transportproteine verzeichnet werden. Als Grund für die Molekulargewichtszunahme im Laufe des Redifferenzierungsprozesses der Zellen konnte die posttranslationale N-Glykosylierung am Beispiel der Transportproteine P-gp, Mrp2 und Bcrp identifiziert werden. Verifiziert wurden die Proteinexpressionsdaten, die apikalen Effluxtransporter P-gp, Mrp2, Bsep und Bcrp betreffend, über die Bestimmung der funktionellen Aktivität unter Verwendung fluoreszierender Modellsubstrate über einen Kultivierungszeitraum von 8 Tagen. Diese funktionelle Aktivität der Transportproteine wurde durch das Erscheinen fluoreszierender Moleküle in den Lumina der Gallenkanälchen ersichtlich und nahm mit voranschreitender Maturierung des Gallenkanalnetzwerkes sowie mit Verstärkung der Transportproteinexpression, gekoppelt mit dem Grad der N-Glykosylierung, zu. Die Selektivität der einzelnen Modellsubstrate wurde mittels in der Literatur beschriebener Substrate und Inhibitoren untersucht und bestätigt. Auf Basis der funktionellen Charakterisierung wurde im Anschluss eine indirekte In vitro-Methode entwickelt, welche die Voraussetzung schuf, Interaktionspotentiale von Arzneistoffen mit Effluxtransportproteinen zu evaluieren. Die Inhibition eines apikalen Transportproteins resultierte dabei prinzipiell in Abhängigkeit der eingesetzten Substanzkonzentration in einer Reduktion des eliminierten fluoreszierenden Modellsubstratanteils, was mit einer Zunahme der intrazellulären Fluoreszenz korrelierte. So konnte aufgezeigt werden, dass bekannte Inhibitoren und Substrate die Transport-proteinaktivität konzentrationsabhängig reduzierten, ohne dass der sichtbare Effekt auf toxische Effekte der eingesetzten Substanzen zurückzuführen war. Dies konnte mittels des Zelltoxizitätsmarkers Alamar blue nachgewiesen werden. Clonidin, welches nicht als ABC-Transportersubstrat beschrieben worden ist, interagierte erwartungsgemäß auch mit keinem der Transportprozesse. Der Einsatz eines derartigen In vitro-Systems in der frühen Arzneistoffentwicklung könnte helfen, geeignete Arzneistoffkandidaten auszuwählen, welche ein geringes Potential aufweisen, mit hepatobiliären Effluxsystemen zu interagieren, um die Gefahr schwerer Arzneimittelnebenwirkungen zu minimieren.