Institut für Immunologie u. Transfusionsmedizin - Abteilung Immunologie
Refine
Year of publication
Document Type
- Doctoral Thesis (42)
- Article (33)
Is part of the Bibliography
- no (75)
Keywords
- - (26)
- Staphylococcus aureus (15)
- Sepsis (9)
- <i>Staphylococcus aureus</i> (4)
- Antikörper (4)
- IgE (4)
- Immunreaktion (4)
- Immunsuppression (4)
- Immunsystem (4)
- allergy (4)
Institute
Publisher
- MDPI (12)
- Frontiers Media S.A. (10)
- S. Karger AG (5)
- Wiley (3)
- AO Research Institute Davos (1)
- American Society for Microbiology (ASM) (1)
- BMJ Publishing Group (1)
The iron-regulated surface determinant protein B (IsdB) of Staphylococcus aureus is involved in the acquisition of iron from hemoglobin. Moreover, IsdB elicits an adaptive immune response in mice and humans. Here, we show that IsdB also has impact on innate immunity. IsdB induces the release of proinflammatory cytokines, including IL-6 and IL-1β, in innate immune cells of humans and mice. In silico analysis and thermophoresis show that IsdB directly binds to TLR4 with high affinity. TLR4 sensing was essential for the IsdB-mediated production of IL-6, IL-1β, and other cytokines as it was abolished by blocking of TLR4-MyD88-IRAK1/4-NF-κB signaling. The release of IL-1β additionally required activation of the NLRP3 inflammasome. In human monocytes infected with live S. aureus, IsdB was necessary for maximal IL-1β release. Our studies identify S. aureus IsdB as a novel pathogen-associated molecular pattern that triggers innate immune defense mechanisms.
Life-threatening toxic shock syndrome is often caused by the superantigen toxic shock syndrome toxin-1 (TSST-1) produced by Staphylococcus aureus. A well-known risk factor is the lack of neutralizing antibodies. To identify determinants of the anti-TSST-1 antibody response, we examined 976 participants of the German population-based epidemiological Study of Health in Pomerania (SHIP-TREND-0). We measured anti-TSST-1 antibody levels, analyzed the colonization with TSST-1-encoding S. aureus strains, and performed a genome-wide association analysis of genetic risk factors. TSST-1-specific serum IgG levels varied over a range of 4.2 logs and were elevated by a factor of 12.3 upon nasal colonization with TSST-1-encoding S. aureus. Moreover, the anti-TSST-1 antibody levels were strongly associated with HLA class II gene loci. HLA-DRB1*03:01 and HLA-DQB1*02:01 were positively, and HLA-DRB1*01:01 as well as HLA-DQB1*05:01 negatively associated with the anti-TSST-1 antibody levels. Thus, both toxin exposure and HLA alleles affect the human antibody response to TSST-1.
Introduction: In the light of the ongoing SARS-CoV-2 pandemic, convalescent plasma is a treatment option for COVID-19. In contrast to usual therapeutic plasma, the therapeutic agents of convalescent plasma do not represent clotting factor activities, but immunoglobulins. Quarantine storage of convalescent plasma as a measure to reduce the risk of pathogen transmission is not feasible. Therefore, pathogen inactivation (e.g., Theraflex®-MB, Macopharma, Mouvaux, France) is an attractive option. Data on the impact of pathogen inactivation by methylene blue (MB) treatment on antibody integrity are sparse. Methods: Antigen-specific binding capacity was tested before and after MB treatment of plasma (n = 10). IgG and IgM isoagglutinin titers were tested by agglutination in increasing dilutions. Furthermore, the binding of anti-EBV and anti-tetanus toxin IgG to their specific antigens was assessed by ELISA, and IgG binding to Fc receptors was assessed by flow cytometry using THP-1 cells expressing FcRI and FcRII. Results: There was no significant difference in the isoagglutinin titers, the antigen binding capacity of anti-EBV and anti-tetanus toxin IgG, as well as the Fc receptor binding capacity before and after MB treatment of plasma. Conclusion: MB treatment of plasma does not inhibit the binding capacity of IgM and IgG to their epitopes, or the Fc receptor interaction of IgG. Based on these results, MB treatment of convalescent plasma is appropriate to reduce the risk of pathogen transmission if quarantine storage is omitted.
: An enhanced indoleamine 2,3-dioxygenase 1 (IDO1) activity is associated with an increased
mortality risk in sepsis patients. Thus, the preventive inhibition of IDO1 activity may be
a promising strategy to attenuate the severity of septic shock. 1-methyltryptophan (1-MT)
is currently in the interest of research due to its potential inhibitory effects on IDO1 and
immunomodulatory properties. The present study aims to investigate the protective and
immunomodulatory effects of 1-methyltryptophan against endotoxin-induced shock in a porcine
in vivo model. Effects of 1-MT were determined on lipopolysaccharide (LPS)-induced tryptophan
(TRP) degradation, immune response and sickness behaviour. 1-MT increased TRP and its metabolite
kynurenic acid (KYNA) in plasma and tissues, suppressed the LPS-induced maturation of neutrophils
and increased inactivity of the animals. 1-MT did not inhibit the LPS-induced degradation of TRP
to kynurenine (KYN)—a marker for IDO1 activity—although the increase in KYNA indicates that
degradation to one branch of the KYN pathway is facilitated. In conclusion, our findings provide
no evidence for IDO1 inhibition but reveal the side effects of 1-MT that may result from the proven
interference of KYNA and 1-MT with aryl hydrocarbon receptor signalling. These effects should be
considered for therapeutic applications of 1-MT.
: Platelets are components of the blood that are highly reactive, and they quickly respond
to multiple physiological and pathophysiological processes. In the last decade, it became clear that
platelets are the key components of circulation, linking hemostasis, innate, and acquired immunity.
Protein composition, localization, and activity are crucial for platelet function and regulation. The
current state of mass spectrometry-based proteomics has tremendous potential to identify and quantify thousands of proteins from a minimal amount of material, unravel multiple post-translational
modifications, and monitor platelet activity during drug treatments. This review focuses on the role
of proteomics in understanding the molecular basics of the classical and newly emerging functions
of platelets. including the recently described role of platelets in immunology and the development
of COVID-19.The state-of-the-art proteomic technologies and their application in studying platelet
biogenesis, signaling, and storage are described, and the potential of newly appeared trapped ion
mobility spectrometry (TIMS) is highlighted. Additionally, implementing proteomic methods in
platelet transfusion medicine, and as a diagnostic and prognostic tool, is discussed.
The GATA1 transcription factor is essential for normal erythropoiesis and megakaryocytic differentiation. Germline GATA1 pathogenic variants in the N-terminal zinc finger (N-ZF) are typically associated with X-linked thrombocytopenia, platelet dysfunction, and dyserythropoietic anemia. A few variants in the C-terminal ZF (C-ZF) domain are described with normal platelet count but altered platelet function as the main characteristic. Independently performed molecular genetic analysis identified a novel hemizygous variant (c.865C>T, p.H289Y) in the C-ZF region of GATA1 in a German patient and in a Spanish patient. We characterized the bleeding and platelet phenotype of these patients and compared these findings with the parameters of two German siblings carrying the likely pathogenic variant p.D218N in the GATA1 N-ZF domain. The main difference was profound thrombocytopenia in the brothers carrying the p.D218N variant compared to a normal platelet count in patients carrying the p.H289Y variant; only the Spanish patient occasionally developed mild thrombocytopenia. A functional platelet defect affecting αIIbβ3 integrin activation and α-granule secretion was present in all patients. Additionally, mild anemia, anisocytosis, and poikilocytosis were observed in the patients with the C-ZF variant. Our data support the concept that GATA1 variants located in the different ZF regions can lead to clinically diverse manifestations.
Vaccine-induced immune thrombotic thrombocytopenia (VITT) and cerebral venous sinus thrombosis (CVST) have been recently described as rare complications following vaccination against SARS-CoV-2 with vector vaccines. We report a case of a young woman who presented with VITT and cerebral CVST 7 days following vaccination with ChAdOx1 nCov-19 (AstraZeneca). While the initial MRI was considered void of pathological findings, MRI 3 days later revealed extensive CVST of the transversal and sigmoidal sinus with intracerebral haemorrhage. Diagnostic tests including a platelet-factor-4-induced platelet activation assay confirmed the diagnosis of VITT. Treatment with intravenous immunoglobulins and argatroban resulted in a normalisation of platelet counts and remission of CVST.
The study of host-pathogen interactions is central to a better understanding of the human microbiome, infections and the inner workings of immune cells. One focal point of this research is how the human immune system recognises both harmful and harmless antigens, integrates the resulting signals and forms a response, and how, conversely, microbes can manipulate this reaction.
In this thesis, Pseudomonas aeruginosa (P. aeruginosa), a critical pathogen in chronic and nosocomial infections, was in the focus. The aim was to search for bacterial proteins that favour a type 2 immune response, as it is orchestrated by CD4+ type 2 T helper cells (Th2 cells). The humoral arm of a type 2 response is dominated by IgG4 and IgE. Such immune responses are typically directed against multicellular pathogens like helminths and other parasites. However, type 2 immune responses are suboptimal for the defence against extracellular bacteria like P. aeruginosa. Previous research suggests that some bacterial proteins may promote a switch to such an insufficient immune response as a mechanism of immune evasion.
To optimise the sensitivity of the search for type 2 response inducing proteins of P. aeruginosa, cystic fibrosis (CF) patients were studied, as many are exposed to the pathogen in their airways over prolonged time periods. As such, the humoral immune response of 9 CF patients to their own P. aeruginosa strain was examined. For this, the secretomes of 9 clinical P. aeruginosa isolates from CF patients and the P. aeruginosa reference strain PAO-1 were studied by 2D-immunoblotting for their ability to be bound by IgG4 and IgG1 from respective patient sera. IgG4 served as a proxy for IgE, as assays analysing IgE binding suffer from low sensitivity because of low serum concentrations of IgE. Antibody reactive P. aeruginosa proteins were then identified by liquid chromatography tandem mass spectrometry and the results were compared with proteomics data from literature.
In total, 308 distinct protein spots were analysed. These belonged to 17 bacterial proteins, which comprise the entire known P. aeruginosa secretome. Of these spots, 232 were bound by IgG4, and 24 by IgG1 only. Notably proteases like serralysin and P. aeruginosa elastase presented with an IgG4 bias. This is concordant with previous research linking proteases to a type 2 immune response. Moreover, structural proteins like
agellins were also immunodominant. Flagellins are known as common targets of immune detection in bacteria. These proteins also demonstrated a clear IgG4 bias.
Thus, the search for secreted P. aeruginosa proteins that elicit an IgG4-dominated antibody response was successful. It remains to be shown whether these bacterial proteins are also recognized by IgE and Th2 cells, meaning whether they are truly driving a type 2 immune response in CF patients. It is also an open question whether the observed IgG4 bias in the antibody response to the exoproteome of P. aeruginosa is specific to CF or a general feature of the human immune response to the pathogen.
Therapeutische Antikörper können unerwartete Wirkungen verursachen, wenn das Zielantigen nicht nur auf den Zielzellen exprimiert wird. Ein gegen das CD38-Antigen gerichteter Antikörper, Daratumumab (DARA), wurde für die Behandlung des multiplen Myeloms entwickelt. Allerdings beeinträchtigt dieser Antikörper erheblich die Verträglichkeitsuntersuchungen zwischen Blutkonserve und Patientenplasma vor der Transfusion von Erythrozytenkonzentraten.
CD38 wird auch auf Erythrozyten (RBCs) exprimiert. Durch die Bindung von DARA an die Spendererythrozyten wird im indirekten Antihumanglobulintest (IAT) eine in vitro Unverträglichkeit mit allen Testerythrozyten angezeigt. Dies wird dadurch verursacht, dass das erforderliche Antihumanglubulin (AHG) humanes IgG bindet, unabhängig davon, welches Zielantigen dieser Antikörper hat. Infolgedessen können Agglutinationen durch transfusionsrelevante Antikörper im Patientenplasma von DARA-induzieretn Agglutinationen nicht unterschieden werden, wodurch das Risiko für akute hämolytische Transfusionsreaktionen steigt.
Daraus ergab sich die Fragestellung für meine Arbeit – eine Modifikation für den IAT zu finden, der diese Interferenz auflöst. Ich habe zwei neue Strategien verfolgt: i) die Adsorption von DARA aus dem Patientenplasma mit CD38-exprimierenden peripheren Blutzellen, ii) die Blockung der DARA-Bindungsstelle auf Erythrozyten, ohne dass die Bindung von transfusionsrelevanten erythrozytären Antikörpern behindert wird.
Für den ersten Ansatz konnte ich PBMCs als die Zellen identifizieren, die die höchste CD38 Expression zeigten. Leider konnte die Inkubation von DARA-gespiktem Plasma selbst nach mehreren Adsorptionsschritten die Interferenz im IAT nicht vollständig beseitigen. Auch die Durchführung der Methode erwies sich als nicht praktikabel für ein Routine-Diagnostiklabor. Für den zweiten Ansatz habe ich mit Hilfe von Pepsin F(ab‘)2 Fragmente von DARA hergestellt um damit die DARA-Bindungsstelle auf den Erythrozyten zu blockieren, damit das AHG nur an gebundene transfusionsrelevante Antikörper bindet. Die Zugabe von DARA F(ab´)2 Fragmenten zu den Testerythrozyten konnte die DARA-induzierten Agglutinationen im IAT verhindern und im Plasma vorhandene erythrozytäre Alloantikörper sichtbar und differenzierbar machen. Weiterhin konnte ich nachweisen, dass die Zugabe von DARA (Fab´)2 Fragmenten nicht die Sensitivität der Teste im Gelzentrifugationstest und im Capture® beeinträchtigt. Experimente mit Plasma von Myelom-Patienten vor und nach der DARA-Infusion bestätigten die Ergebnisse. Die Verwendung von F(ab‘)2 Fragmenten ist ein vielversprechendes Verfahren, um Interferenzen von therapeutischen Antikörpern im IAT der prätransfusionellen Diagnostik aufzulösen - nicht nur für Daratumumab.
Infective endocarditis (IE) is a potentially life-threatening infection of the endocardial surfaces of the heart, most frequently the valves. It is typically caused by bacteria, less commonly by fungi. Over the past years, the morbidity and mortality of IE have gradually increased, and it is now the fourth most common life-threatening infection after sepsis, pneumonia, and intra-abdominal abscess. Despite advances in cardiac imaging and diagnostic techniques, the diagnosis of IE remains challenging. The lack of fast and reliable diagnosis of IE can lead to serious complications. Therefore, new diagnostic and therapeutic tools are urgently needed.
This study had two main aims: (i) to investigate whether a pathogen-specific antibody response in IE patients is mounted against different IE pathogens and whether analysis of such a response might be useful for complementing the classical blood culture diagnosis, and (ii) generate and characterize neutralizing monoclonal antibodies (mAbs) against three virulence factors of Staphylococcus aureus (S. aureus), which is the most common etiological agent in IE.
Our research group has recently established an xMAP® (Luminex®) technology-based serological assay that simultaneously quantifies the antibody response against 30 different pathogens. Within the research consortium Card-ii-Omics, we conducted a prospective, observational clinical discovery study involving 17 IE patients and 20 controls (i.e., patients with non-infectious heart-related conditions). Plasma samples were obtained on the day of IE diagnosis from all patients, while samples at later dates over the course of infection were available for only some patients. Invasive pathogens were identified by blood culture.
The infection array revealed antibodies against a broad range of pathogens in both controls and IE patients, suggesting a broad immune memory. Overall, antibody levels did not significantly differ between both groups, but we observed high antibody titers against those pathogens that were detected by blood culture. Whenever available (in the case of 13/17 IE patients), back-up and follow-up plasma samples (obtained before or after diagnosis, respectively) were included in the analyses that provided valuable information about the kinetics of antibody response during the course of infection. Notably, infection array data confirmed (and extended) the blood culture data in only 2/13 cases. In three cases, serology contradicted the microbiological diagnosis, and in three cases, the infection array was able to identify pathogens, while the microbiological diagnosis failed. In three cases, serology was negative while microbiological diagnosis was positive, and in two cases, both serology and microbiological diagnosis were negative. In 6 out of 8 cases with increases in antibody levels, this response was directed against gut microbes. This supports the leaky gut hypothesis, which assumes that breaching of the gut barrier causes translocation of gut microbes into the bloodstream, which then infect the heart valves. Moreover, we observed an increase in antibody titers in 4 patients against the yeast C. albicans, suggesting a secondary fungal infection. Finally, this study emphasized that the timing of plasma collection is crucial for studying antibody kinetics in IE.
After demonstrating that pathogen-specific antibodies are generated during IE, we aimed to generate mAbs against the prime IE pathogen S. aureus and study their functions on a molecular level. Using the hybridoma technology, our research group has recently generated mAbs against two S. aureus surface proteins/adhesion factors (clumping factor A (ClfA) and fibronectin-binding protein A (FnBPA)), both involved in biofilm formation, as well as an extracellular enzyme, the staphylococcal serine protease–like protein B (SplB), a virulence factor. In this work, the sequences of the mAbs were determined from hybridoma RNA. Then those mAbs were produced at a larger scale in order to determine their binding and neutralizing capacities using in vitro assays such as ELISA, Western blot, Dot blot, microscale thermophoresis, and in a mouse model.
The anti-SplB mAb specifically targeted SplB, with no cross-reactivity to other Spls or extracellular proteins (ECP) of S. aureus. Though anti-SplB mAb showed moderate binding to SplB with a Kd value of 2.54 μM and high sequence homology to the germline sequence, it neutralized the enzymatic activity of SplB up to 99% in 5-fold molar excess as showed in an in vitro substrate cleavage assay. Previous work showed that SplB facilitates the release of proinflammatory cytokines in endothelial cells and induces endothelial damage in mice. Here, we demonstrated that the anti-SplB mAb efficiently blocked the function of SplB in vivo, thus markedly reducing the damage to the endothelial barrier. In conclusion, we identified the strong neutralizing potential of a mAb against SplB, which merits further investigation as a candidate for the immunotherapy of SplB-induced S. aureus pathologies, including IE.
High antibody titers against S. aureus adhesins, including ClfA and FnBPA, have been reported in IE patients. Besides, ClfA is involved in serious S. aureus bloodstream and biofilm-related infections. Similarly, FnBPA facilitates biofilm formation and inhibits macrophage invasion. These important properties make the two bacterial adhesins ideal candidates for a passive vaccination strategy. We generated two murine ClfA-mAbs, ClfA-002 and ClfA-004, which showed strong specificity to ClfA. However, ClfA-004 showed reduced binding strength compared to ClfA-002 due to a single non-synonymous nucleotide change (Phe Tyr) at the CDR3 region. While the ClfA-002 mAb reduced the binding of ClfA to fibrinogen by around 60%, the ClfA-004 had no inhibitory capacity. We also generated two murine and twelve humanized anti-FnBPA mAbs, which showed similar and moderate binding to FnBPA. One murine mAb (anti-FnBPA D4) partially inhibited the binding of FnBPA to fibronectin. FnBPA contains 11 tandem repeats that can all bind to fibronectin. This redundancy could be the reason for the lack of complete inhibition. Hence, in this work, we characterized the properties of neutralizing mAbs against two adhesins of S. aureus. These mAbs should be tested in the future, alone and in combination with other mAbs and antibiotics, for their ability to reduce staphylococcal biofilm formation.
In conclusion, we showed that antibody profiling of IE patients can provide valuable insights into the causative agent(s), and can help in guiding the antibiotic therapy. However, sampling is crucial in IE, which often dwells for many weeks before being clinically diagnosed. Because of the severity of IE, which can be life-threatening, I suggest to establish biobanks to store patient samples upon hospital admission that will provide a baseline in case of a later microbial infection. Moreover, our results suggest that C. albicans plays an important and so far underestimated role in IE. In the second part of the thesis, we characterized several mAbs against an S. aureus protease and two adhesins. Of high interest is a neutralizing mAb against SplB, which shows promising results in vitro and in vivo. Further in vitro and in vivo tests need to be conducted to study the anti-biofilm activity of the anti-FnBPA- and anti-ClfA-mAbs and explore their utility as therapeutic agents.