Institut für Mikrobiologie - Abteilung für Genetik & Biochemie
Refine
Year of publication
Document Type
- Article (43)
- Doctoral Thesis (42)
Has Fulltext
- yes (85)
Is part of the Bibliography
- no (85)
Keywords
- - (38)
- Streptococcus pneumoniae (7)
- Saccharomyces cerevisiae (6)
- Arxula adeninivorans (5)
- Enzym (4)
- Hefe (4)
- proteomics (4)
- Biochemische Analyse (3)
- Pneumokokken (3)
- Virulenz (3)
Publisher
- Frontiers Media S.A. (20)
- MDPI (14)
- S. Karger AG (3)
- American Society for Microbiology (ASM) (1)
- Nature Publishing Group (1)
- Public Library of Science (PLoS) (1)
- Wiley (1)
Bacterial kidney disease (BKD) is a chronic bacterial disease affecting both wild and farmed salmonids. The causative agent for BKD is the Gram-positive fish pathogen Renibacterium salmoninarum. As treatment and prevention of BKD have proven to be difficult, it is important to know and identify the key bacterial proteins that interact with the host. We used subcellular fractionation to report semi-quantitative data for the cytosolic, membrane, extracellular, and membrane vesicle (MV) proteome of R. salmoninarum. These data can aid as a backbone for more targeted experiments regarding the development of new drugs for the treatment of BKD. Further analysis was focused on the MV proteome, where both major immunosuppressive proteins P57/Msa and P22 and proteins involved in bacterial adhesion were found in high abundance. Interestingly, the P22 protein was relatively enriched only in the extracellular and MV fraction, implicating that MVs may play a role in host–pathogen interaction. Compared to the other subcellular fractions, the MVs were also relatively enriched in lipoproteins and all four cell wall hydrolases belonging to the New Lipoprotein C/Protein of 60 kDa (NlpC/P60) family were detected, suggesting an involvement in the formation of the MVs.
In unserem Alltag sind Polymere weit verbreitet. In Form von funktionellen Polymeren werden sie u.a. als Wirk- oder Effektstoff eingesetzt. Sie bestehen aus einem Träger, an welchen über einen Spacer eine funktionelle Gruppe gebunden ist. Die Spacergruppen beeinflussen die chemischen, physikalischen und biologischen Eigenschaften der Polymere bzw. ermöglichen diese erst. Dadurch stellen sie in der pharmazeutischen Industrie und der medizinischen Chemie Schlüsselbausteine dar.
Auch Monoester von symmetrischen Dicarbonsäuren oder symmetrischen Diolen werden für die Einführung von Spacergruppen verwendet. Sie können durch die Hydrolyse von Diestern oder Dioldiestern chemisch synthetisiert werden. Da diese Reaktion nicht selektiv erfolgt, entstehen Nebenprodukte wie Disäuren oder Diole, die die Ausbeuten schmälern und eine aufwändige Aufarbeitung notwendig machen. Selektive enzymatische Verfahren stellen eine echte Alternative dar, denn eine Trennung des Produkts vom Nebenprodukt ist nicht notwendig. Bisher sind nur wenige Enzyme bekannt und verfügbar, die zur Synthese von Monoestern verwendet werden können.
Ziel dieser Arbeit ist die Entdeckung neuer Lipasen und Carboxylesterasen als Biokatalysatoren zur Synthese von Monoestern, die zudem in ausreichender Verfügbarkeit generiert werden sollen. Als Gendonor und Expressionssystem diente hierfür die Hefe Blastobotrys raffinosifermentans. Die nicht-konventionelle, nicht-pathogene und thermotolerante Hefe B. raffinosifermentans weist ein breites Kohlenstoff- und Stickstoff-Quellen Spektrum auf, was sie für industrielle Anwendungen interessant macht. Aufgrund einer bereits vielfach eingesetzten, effizienten Transformationsmethode wurde die Hefe bereits zur Produktion verschiedener Proteine wie humanem Serumalbumin, Interleukin-6, Phosphatasen mit Phytase-Aktivität, Tannasen und einer Lipase eingesetzt. Die exzellenten Wachstumsparameter garantieren hohe Enzymausbeuten.
Insgesamt wurden in dieser Arbeit 30 putative Lipase- und Carboxylesterase-Gene in ihrem Genom durch Annotationsanalysen identifiziert. Diese Gene wurden isoliert, amplifiziert und in der Hefe selbst überexprimiert. Die Proteinextrakte der erzeugten Stämme wurden anschließend auf Esteraseaktivität getestet, wovon sieben Kandidaten das Substrat p-Nitrophenylbutyrat (pNP-Butyrat) hydrolysierten. Anschließend wurde mittels eines Assays untersucht, ob die Enzyme die Hydrolyse der Substrate Adipinsäurediethylester (DEA), Dimethyl trans-1,4-cyclohexandicarboxylat (DMCH), Terephthalsäurediethylester (DETS) und Decandiol-dimethacrylsäureester (DDMAE) katalysieren. Vier Kandidaten hydrolysierten DEA und DMCH und ein Extrakt eignete sich zur Hydrolyse von DETS. Es folgten eine Testung auf Selektivität mittels Gaschromatographie mit gekoppeltem Flammenionisationsdetektor und eine affinitätschromatographische Reinigung der fünf Proteine. Dabei stellten sich die drei Kandidaten Alip2-6hp, 6h-Best1p und 6h-Best2p, eine putative Lipase und zwei putative Carboxylesterasen, als potenziell geeignete Kandidaten heraus.
Anschließend erfolgte die biochemische Charakterisierung der drei Proteine. Das Temperatur-Optimum der Enzyme lag zwischen 31 °C und 41 °C und das pH-Optimum zwischen 6,6 und 7,0. Die Metallionen Fe2+, Fe3+ und Cu2+ inhibierten alle drei Biokatalysatoren und auch die Zugabe verschiedener Lösungsmittel verringerte ihre Aktivität. Die Untersuchung des Substratspektrums mit p-Nitrophenylestern mit Kettenlängen von C2 bis C18 zeigte eine Präferenz von Alip2-6hp für mittelkettige pNP-Ester mit einem Maximum bei pNP-Caproat und von 6h-Best1p und 6h-Best2p für kurzkettige pNP-Ester mit einem Maximum bei pNP-Acetat. 6h-Best1p und 6h-Best2p zeigen damit das für Carboxylhydrolasen typische Substratspektrum. Da Lipasen üblicherweise langkettige Substrate bevorzugen, wurde die Klassifizierung für Alip2-6hp mittels Tween 20- und Olivenöl-Agarplattentest weiter untersucht. Das positive Ergebnis dieser Untersuchung lässt auf eine Lipase schließen.
Zur Bestimmung der Selektivität der Enzyme wurde die Hydrolyse von DEA und DMCH zeitlich per GC-FID verfolgt. Nach Derivatisierung der Carboxylgruppen war die quantitative Auswertung zum Gehalt an Monoester, Diester und Disäure möglich. Es ließ sich damit die Hydrolyse von DEA mit 6h-Best1p bestätigen. Bessere Ergebnisse wurden mit Alip2-6hp für das Substrat DMCH erzielt und mit Abstand die schnellste Hydrolyse wurde mit DEA als Substrat erreicht. In gereinigter Form hydrolysierte Alip2-6hp das Substrat DEA selektiv zu MEA, sodass bis zu 96 % Monoester synthetisiert werden konnten. Im Vergleich dazu wird MEA deutlich langsamer hydrolysiert.
Zusätzlich wurden fünf unterschiedliche Formulierungen des Enzyms Alip2-6hp mit dem Substrat DEA getestet: (1) Rohextrakt, (2) freies, gereinigtes Enzym, (3) immobilisiertes, gereinigtes Enzym (Beads) und als Ganzzellkatalysatoren (4) permeabilisierte (Triton-) Zellen und (5) permeabilisierte, immobilisierte (Triton-) Zellen. Die vielversprechendsten Ergebnisse wurden mit isoliertem gereinigtem Enzym erzielt. DEA wurde vollständig und spezifisch zu MEA umgesetzt.
Zur Gewährleistung einer ausreichenden Verfügbarkeit der Enzyme erfolgte die Kultivierung der Überexpressionsstämme im Fermenter im Fed-batch. Der Alip2-6hp produzierende Hefestamm erbrachte Aktivitäten von 674 U L-1, während der 6h-Best2p Überexpressionsstamm 2239 U L-1 produzierte.
The aquaculture industry has been consistently and successfully growing over the
years, supplying over 50% of the fish humans consume. A large part of this success is due
to the implementation of vaccination, which is by far the most reliable prophylactic method
in large-scale fish farming. Nonetheless, although recent fish vaccines have greatly
contributed to the development and sustainability of the aquaculture industry, they not
always offer sufficient protection to provide acceptable survival rates when infectious
diseases outbreaks occur. Therefore, infectious diseases and effective vaccines still
constitute major problems for aquaculture.
Different practical aspects and biological factors of fish have also contributed to the
unsuccessful outcome of fish vaccines. To date, many of the most effective vaccines for fish
are injectable, and their formulation includes aluminum or oil emulsion adjuvants. Both facts
constitute a major issue for animal welfare due to the stress and side effects they trigger.
Great strides have been made in innovative technologies for fish vaccines. However, as of
today, they are not available on the market. Thus, improvements in vaccine formulations and
delivery routes remain an open topic and leads the to-do list of science with the aquaculture
of the future.
Vaccination provides immunity against a determined pathogen, and this is inherent
to the immune system. Therefore, thorough knowledge about the fish immune system and
how it is influenced by internal and external factors will certainly support rational vaccine
design. Thereby, the immune responses triggered by a vaccine can be exhaustively
characterized, and the formulations improved in case it is needed.
Hence, the goal of this PhD thesis, is to provide knowledge to improve fish
vaccination, both in its formulation and in its efficacy, aiming to promote the rational design
of fish vaccines. Additionally, this work proposes a holistic view of fish, where the
physiology and culture conditions of the fish are the starting points for the development and
application of vaccines. Thus, concepts and considerations for rational vaccine design
specific for fish are presented here.
Article I of this thesis offers a comprehensive review on the current situation in
Chile, but also worldwide aquaculture and the challenges it must face in the future. Namely,
recurrent pathogenic outbreaks and sub-optimal levels of protection due to inefficient
vaccination. This article established an open and flexible ground upon which to reflect on
how and what to improve in fish vaccines, leading the efforts towards rational vaccine
design.
In Article II, we investigated whether the current most used vaccination route,
intraperitoneal, can be improved by reducing the side effects of adjuvants, replacing them
with in the vaccine formulations with Poly-(D,L-lactic-co-glycolic) acid (PLGA)
microparticles, that serve simultaneously as vaccine vehicle and adjuvants.
Article III summarizes the scientific literature about what is known about the teleost
thymus. From this, it became clear how external factors such as photoperiod and seasonality
can modulate this primary lymphatic organ, and probably, immune responses. These are
essential factors to consider if effective and protective vaccines are needed in species highly
influenced by the environment such as fish.
As discussed in Article III, fish are poikilotherm animals, highly sensitive to
environmental factors like light. In Article IV, we reported for the first time, light generates
daily rhythms in cells’ circulation and gene expression, entraining the trout immune
response. Therefore, “when” (time of the day) we stimulate fish matters in order to get
optimal immune responses. Article V provides valuable knowledge about what happens
with fish immune responses, against a bacterial agent, under constant cues like light/dark
cycles and temperature. Once again, “when” we stimulate fish (season), influences the fish
immune status and therefore, their immune responses.
Finally, Article VI reports, for the first time, leukocytes extracted from fins of trout
directly respond to a parasitic infection. This article supports the idea that further research
must be done on fish mucosal surfaces, since they are key to stimulating/vaccinating fish, as
they are a natural entry route for pathogens and modulate the immune responses mounted.
Overall, the information provided by these articles is highly relevant for the
aquaculture industry. Firstly, because the vaccine platform based on PLGA microparticles
is promising for the future of fish vaccination, harmful adjuvants can be avoided, while still
providing enhanced stimulation thanks to the timed-released capacity of the particles.
Additionally, they offer the possibility to adapt them to in-feed vaccine pellets, which is the
ideal delivery route for fish. Secondly, accurate vaccination protocols can be established;
vaccination should be done during daytime, and preferably during the morning, where the
physiological status of fish provide optimal conditions for induction of an ultimately
protective immune response after vaccination. Furthermore, vaccination should be done
during warm months, spring, or summertime, as apparently fish have free-run internal clocks
that negatively modulate adaptive immune responses during wintertime.
In summary, the present thesis provides a novel concept for vaccination of
aquacultured species based on new data for rational vaccine design, with optimal application
procedures based on the optimal timing (season and daytime), reduced stress by oral
application and considerations about improving “first-line defenses” by vaccination via
mucosal surfaces of gut or skin.
Infective/bacterial endocarditis is a rare but life-threatening disease with a hospital mortality rate of 22.7% and a 1-year mortality rate of 40%. Therefore, continued research efforts to develop efficient anti-infective implant materials are of the utmost importance. Equally important is the development of test systems that allow the performance of new materials to be comprehensively evaluated. In this study, a novel antibacterial coating based on dalbavancin was tested in comparison to rifampicin/minocycline, and the suitability of a recently developed mouse tail vein model for testing the implant coatings was validated. Small polymeric stent grafts coated with a poly-L-lactic acid (PLLA) layer and incorporated antibiotics were colonized with Staphylococcus (S.) aureus before implantation into the tail vein of mice. The main assessment criteria were the hematogenous spread of the bacteria and the local tissue reaction to the contaminated implant. For this purpose, colony-forming units (CFU) in the blood, spleen and kidneys were determined. Tail cross sections were prepared for histological analysis, and plasma cytokine levels and expression values of inflammation-associated genes were examined. Both antibiotic coatings performed excellently, preventing the onset of infection. The present study expands the range of available methods for testing the anti-infectivity of cardiovascular implants, and the spectrum of agents for effective surface coating.
Feasible Cluster Model Method for Simulating the Redox Potentials of Laccase CueO and Its Variant
(2022)
Laccases are regarded as versatile green biocatalysts, and recent scientific research has focused on improving their redox potential for broader industrial and environmental applications. The density functional theory (DFT) quantum mechanics approach, sufficiently rigorous and efficient for the calculation of electronic structures, is conducted to better comprehend the connection between the redox potential and the atomic structural feature of laccases. According to the crystal structure of wild type laccase CueO and its variant, a truncated miniature cluster model method was established in this research. On the basic of thermodynamic cycle, the overall Gibbs free energy variations before and after the one-electron reduction were calculated. It turned out that the trends of redox potentials to increase after variant predicted by the theoretical calculations correlated well with those obtained by experiments, thereby validating the feasibility of this cluster model method for simulating the redox potentials of laccases.
Editorial: Streptococci in infectious diseases – pathogenic mechanisms and host immune responses
(2022)
Bloodstream infections caused by Streptococcus pneumoniae induce strong inflammatory and procoagulant cellular responses and affect the endothelial barrier of the vascular system. Bacterial virulence determinants, such as the cytotoxic pore-forming pneumolysin, increase the endothelial barrier permeability by inducing cell apoptosis and cell damage. As life-threatening consequences, disseminated intravascular coagulation followed by consumption coagulopathy and low blood pressure is described. With the aim to decipher the role of pneumolysin in endothelial damage and leakage of the vascular barrier in more detail, we established a chamber-separation cell migration assay (CSMA) used to illustrate endothelial wound healing upon bacterial infections. We used chambered inlets for cell cultivation, which, after removal, provide a cell-free area of 500 μm in diameter as a defined gap in primary endothelial cell layers. During the process of wound healing, the size of the cell-free area is decreasing due to cell migration and proliferation, which we quantitatively determined by microscopic live cell monitoring. In addition, differential immunofluorescence staining combined with confocal microscopy was used to morphologically characterize the effect of bacterial attachment on cell migration and the velocity of gap closure. In all assays, the presence of wild-type pneumococci significantly inhibited endothelial gap closure. Remarkably, even in the presence of pneumolysin-deficient pneumococci, cell migration was significantly retarded. Moreover, the inhibitory effect of pneumococci on the proportion of cell proliferation versus cell migration within the process of endothelial gap closure was assessed by implementation of a fluorescence-conjugated nucleoside analogon. We further combined the endothelial CSMA with a microfluidic pump system, which for the first time enabled the microscopic visualization and monitoring of endothelial gap closure in the presence of circulating bacteria at defined vascular shear stress values for up to 48 h. In accordance with our CSMA results under static conditions, the gap remained cell free in the presence of circulating pneumococci in flow. Hence, our combined endothelial cultivation technique represents a complex in vitro system, which mimics the vascular physiology as close as possible by providing essential parameters of the blood flow to gain new insights into the effect of pneumococcal infection on endothelial barrier integrity in flow.
Epithelial cells are an important line of defense within the lung. Disruption of the epithelial barrier by pathogens enables the systemic dissemination of bacteria or viruses within the host leading to severe diseases with fatal outcomes. Thus, the lung epithelium can be damaged by seasonal and pandemic influenza A viruses. Influenza A virus infection induced dysregulation of the immune system is beneficial for the dissemination of bacteria to the lower respiratory tract, causing bacterial and viral co-infection. Host cells regulate protein homeostasis and the response to different perturbances, for instance provoked by infections, by post translational modification of proteins. Aside from protein phosphorylation, ubiquitination of proteins is an essential regulatory tool in virtually every cellular process such as protein homeostasis, host immune response, cell morphology, and in clearing of cytosolic pathogens. Here, we analyzed the proteome and ubiquitinome of A549 alveolar lung epithelial cells in response to infection by either Streptococcus pneumoniae D39Δcps or influenza A virus H1N1 as well as bacterial and viral co-infection. Pneumococcal infection induced alterations in the ubiquitination of proteins involved in the organization of the actin cytoskeleton and Rho GTPases, but had minor effects on the abundance of host proteins. H1N1 infection results in an anti-viral state of A549 cells. Finally, co-infection resembled the imprints of both infecting pathogens with a minor increase in the observed alterations in protein and ubiquitination abundance.