Institut für Pharmazie
Refine
Year of publication
Document Type
- Doctoral Thesis (118)
- Article (60)
Has Fulltext
- yes (178)
Is part of the Bibliography
- no (178)
Keywords
- - (51)
- Biopharmazie (14)
- Wirkstofffreisetzung (13)
- Pharmazeutische Technologie (8)
- In vitro (7)
- Bacillus (6)
- Cytotoxizität (6)
- Magen (6)
- Gastrointestinaltrakt (5)
- antibiotic resistance (5)
Institute
Publisher
- MDPI (43)
- Frontiers Media S.A. (6)
- Wiley (4)
- BioMed Central (BMC) (2)
- John Wiley & Sons, Ltd (2)
- BMC Springer (1)
- John Wiley & Sons, Inc. (1)
- Springer (1)
Die Kenntnis über die im Gastrointestinaltrakt ablaufenden Prozesse spielt in der Entwicklung neuer Arzneiformen eine entscheidende Rolle. Besonders im Dickdarm ist dabei neben den physiologischen Bedingungen die bakterielle Besiedlung zu beachten, welche sowohl inter- als auch intraindividuell hoch variabel ist. Bislang gibt es keine einheitliche Methode zur Untersuchung des Einflusses der intestinalen Mikrobiota auf die Metabolisierung von Arzneistoffen. Diese Methoden sind jedoch entscheidend für das Verständnis des Einflusses der bakteriellen Metabolisierung auf die Pharmakokinetik und -dynamik der Arzneistoffe.
Übergeordnetes Ziel dieser Arbeit war es, ein In vitro-Modell zu entwickeln und anzuwenden, welches die dynamischen Bedingungen im Colon ascendens, insbesondere im Hinblick auf die pH-Werte, Durchmischung und bakterielle Besiedlung, darstellt.
Um dieses Ziel zu erreichen, wurde im Rahmen erster Versuche untersucht, wie es sowohl mit monographierten als auch biorelevanten Modellen möglich ist, die mechanische Belastung, die auf eine Arzneiform im GIT ausgeübt wird, darzustellen. Die Verwendung der SmartPill™ eröffnete die Möglichkeit, in den Apparaturen auftretende Drücke aufzuzeichnen. Außerdem konnten die gemessenen Drücke anschließend mit Daten aus In vivo-Studien verglichen werden. Die Untersuchungen ergaben, dass in den monographierten Apparaturen keine Drücke auftreten, die den während der Magen-Darm-Passage auftretenden Drücken entsprechen. Im Gegensatz dazu können im DOFTA gezielt Drücke und so auch vollständige Druckprofile simuliert werden.
Im weiteren Verlauf der Arbeit waren die zuvor gewonnenen Erkenntnisse hilfreich für die Entwicklung des neuen Modells zur Darstellung des Colon ascendens. In das MimiCol wurden pH-Wert-Daten aus einer SmartPill™-Studie implementiert. Die Vorteile des neuartigen Bioreaktors MimiCol sind das kleinere Medienvolumen, das den In vivo-Bedingungen näherkommt, die Möglichkeit, Medienwechsel durchzuführen und dadurch Metabolite abzuführen und neue Nährstoffe hinzuzufügen sowie die genauere Simulation von In vivo-Durchmischungsmustern.
Ziel der durchgeführten Untersuchung war der Vergleich der Metabolisierung des Modellarzneistoffs Sulfasalazin in dem neuartigen dynamischen Bioreaktor MimiCol und einem statischen Standard-Batch-Fermenter. Beide wurden mit der gleichen, kryokonservierten fäkalen Standardmikrobiota beimpft. Die Experimente zeigten, dass das MimiCol in der Lage ist, die dynamischen Bedingungen im aufsteigenden Dickdarm zu simulieren. Die dynamischen Bedingungen im MimiCol führten zu einer Verdopplung der Metabolisierungskonstanten im Vergleich zum statischen Batch-Fermenter. Das MimiCol ahmt, besonders in Bezug auf pH-Fluktuationen und Bakterienwachstum, die dynamischen Bedingungen im aufsteigenden Dickdarm nach und könnte sich in allen Phasen der Arzneimittel- und Formulierungsentwicklung als nützlich erweisen.
Zur Erleichterung und Beschleunigung der Datengenerierung wurde im nächsten Schritt eine Erweiterung des Modells angestrebt. Hierbei war es die größte Herausforderung, die ursprünglichen Parameter auf ein erweitertes Modell mit einer anderen Steuerung und anderen Komponenten zu übertragen. Außerdem wurde in diesem Zuge die Charakterisierung komplexer Bakterienkulturen mittels 16S rRNA-Sequenzierung eingeführt. Bei der Erweiterung des Modells wurde besonderes Augenmerk auf die Einfachheit des Designs und die leichte Skalierbarkeit gelegt.
Um zu beweisen, dass die Übertragung der Parameter erfolgreich war, wurde erneut der Abbau von Sulfasalazin untersucht und die bakterielle Zusammensetzung während des Experiments durch 16S rRNA-Sequenzierung analysiert. Die Übertragung der Versuchsbedingungen auf das neue Modell war erfolgreich. Kommerziell erhältliche Komponenten wurden in den Aufbau implementiert. Das Modell MimiCol³ repräsentierte das Colon ascendens in seinen Eigenschaften bezüglich des Volumens, pH-Werts und Redoxpotentials zufriedenstellend. Die 16S rRNA-Sequenzierung führte zu weiteren Erkenntnissen über die bakterielle Zusammensetzung in den drei Gefäßen. Der Abbau von Sulfasalazin stand in guter Übereinstimmung mit den In vivo-Daten und den im MimiCol gewonnenen Daten. Das neue Modell des Colon ascendens MimiCol³ ermöglichte es, zuverlässigere Daten zu sammeln, da drei Experimente gleichzeitig unter denselben Bedingungen durchgeführt wurden.
Die durchgeführten Untersuchungen zeigen, dass ein wichtiges Instrument zur Untersuchung des Einflusses unseres Mikrobioms im Darm auf den Abbau von Arzneistoffen und Arzneiformen entwickelt wurde.
In drei verschiedenen Teilanalysen wurden Erkenntnisse über die Wirksamkeit von Interventionsmaßnahmen gegen das Vorkommen und die Verbreitung von ESBL/AmpC-bildenden E. coli in der Hühnermast gewonnen. Literaturdaten und praktische Laborergebnisse, die teilweise selbst erhoben wurden, flossen in ein mathematisches Modell ein, um die Auswirkungen von Haltungsparametern und konkreten Interventionsmaßnahmen prädiktiv berechnen zu können. Die zusammengefassten Ergebnisse zeigen einen Einfluss der Maßnahmen „Competitive Exclusion“, „Reinigung und Desinfektion“ sowie den Haltungsparametern „Rasse“, „geringe Besatzdichte“ und „erhöhte Einstreumenge“ auf das Vorkommen von bestimmten ESBL/AmpC-bildenden E. coli. Zusätzlich zu den Einzelmaßnahmen wurden im Modell mehrere Kombinationen getestet, wobei zwei unterschiedlichen Szenarien verwendet wurden, entweder der Stall oder die Eintagsküken waren zu Beginn der Mastperiode positiv. Diese Kombinationen ergaben eine deutliche Reduktion der resistenten E. coli in den infizierten Tieren, in deren Ausscheidungen und in der Einstreu. In diesem Zusammenhang wären Daten aus tierexperimentellen Studien zu kombinierten Maßnahmen interessant. Weitere wissenschaftliche Ergebnisse könnten zu einem optimierten Modell beitragen, damit es die realen Bedingungen besser widerspiegelt. Zu einer weiteren Präzisierung könnte zum Beispiel die dezidierte mathematische Berechnung des Wachstums von resistenten E. coli in den unterschiedlichen Teilen des Gastrointestinaltrakts des Huhns und in der Einstreu führen, unter Berücksichtigung von pH-Wert und Temperatur. Ungeachtet dessen bietet die vorliegende Version des Modells eine nützliche Unterstützung bei der Vorhersage der Auswirkung unterschiedlicher Maßnahmen auf das Auftreten und die Verbreitung von ESBL/AmpC-bildenden E. coli in Masthuhnbetrieben. Diese Ergebnisse können zu einer umfassenden Quantitativen mikrobiologischen Risikobewertung (QMRA) beitragen, mittels derer die Effizienz von Risikominderungsmaßnahmen in der gesamten Broilerproduktionskette, von der Brüterei und Aufzucht über die Mast, Schlachtung, Verarbeitung und den Einzelhandel bis hin zum Verzehr - from farm to fork, bestimmt werden kann.
Die Kv7-Kaliumkanalöffner Flupirtin und Retigabin waren wertvolle Alternativen bei der Pharmakotherapie von Schmerzen und Epilepsie. Beide Wirkstoffe werden aufgrund von unerwünschten Arzneimittelwirkungen derzeit jedoch nicht mehr eingesetzt. Die Flupirtin-induzierte Hepatotoxizität und die durch Retigabin hervorgerufenen Gewebeverfärbungen scheinen dabei auf den ersten Blick nicht zusammenzuhängen. Gleichwohl lassen sich wahrscheinlich beide Nebenwirkungen auf das gemeinsame oxidationsempfindliche Triaminoaryl-Grundgerüst zurückführen, welches zur Bildung von reaktiven Chinondiimin-Metaboliten neigt. Da hingegen der Wirkungsmechanismus, d. h. die Öffnung der Kv7-Kanäle, nicht an der Toxizität beteiligt zu sein scheint, hatte diese Arbeit zum Ziel, sicherere Alternativen für Flupirtin und Retigabin zu entwickeln. In einem Liganden-basierten Ansatz wurde eine Umgestaltung des Triaminoaryl-Kerns, den beide Wirkstoffe gemeinsam haben, vorgenommen, was zu Carba-Analoga führte, die durch eine erhöhte Oxidationsbeständigkeit sowie ein vernachlässigbares Risiko für die Bildung von chinoiden Metaboliten charakterisiert sind. Zusätzlich zu diesen verbesserten Sicherheitsmerkmalen offenbarten einige der neuartigen Derivate eine überlegene Kv7.2/3-Kanalöffnungsaktivität. Im Vergleich zu Flupirtin konnte die Potenz der Verbindungen um den Faktor 150 gesteigert werden, während die intrinsische Aktivität auf bis zu 176 % verbessert werden konnte, was die betreffenden Carba-Analoga zu vielversprechenden Kandidaten für eine weitergehende Entwicklung macht. Andererseits ermöglichten einige inaktive Verbindungen sowie die insgesamt deutlich abgestuften Kv7.2/3-Aktivitätsdaten die Etablierung von validen Struktur-Wirkungs-Beziehungen und Hypothesen zum Bindungsmodus, die mit Dockingergebnissen und Molekulardynamik-Simulationen korrelierten.
Abstract
Saliva is an attractive sampling matrix for measuring various endogenous and exogeneous substances but requires sample treatment prior to chromatographic analysis. Exploiting supercritical CO2 for both extraction and chromatography simplifies sample preparation, reduces organic solvent consumption, and minimizes exposure to potentially infectious samples, but has not yet been applied to oral fluid. Here, we demonstrate the feasibility and benefits of online supercritical fluid extraction coupled to supercritical fluid chromatography and single‐quadrupole mass spectrometry for monitoring the model salivary tracer caffeine. A comparison of 13C‐ and 32S‐labeled internal standards with external standard calibration confirmed the superiority of stable isotope‐labeled caffeine over nonanalogous internal standards. As proof of concept, the validated method was applied to saliva from a magnetic resonance imaging study of gastric emptying. After administration of 35 mg caffeine via ice capsule, salivary levels correlated with magnetic resonance imaging data, corroborating caffeine's usefulness as tracer of gastric emptying (R2 = 0.945). In contrast to off‐line methods, online quantification required only minute amounts of organic solvents and a single manual operation prior to online bioanalysis of saliva, thus demonstrating the usefulness of CO2‐based extraction and separation techniques for potentially infective biomatrices.
Abstract
Neutrophils are the most abundant leukocytes in circulation playing a key role in acute inflammation during microbial infections. Phagocytosis, one of the crucial defence mechanisms of neutrophils against pathogens, is amplified by chemotactic leukotriene (LT)B4, which is biosynthesized via 5‐lipoxygenase (5‐LOX). However, extensive liberation of LTB4 can be destructive by over‐intensifying the inflammatory process. While enzymatic biosynthesis of LTB4 is well characterized, less is known about molecular mechanisms that activate 5‐LOX and lead to LTB4 formation during host–pathogen interactions. Here, we investigated the ability of the common opportunistic fungal pathogen Candida albicans to induce LTB4 formation in neutrophils, and elucidated pathogen‐mediated drivers and cellular processes that activate this pathway. We revealed that C. albicans‐induced LTB4 biosynthesis requires both the morphological transition from yeast cells to hyphae and the expression of hyphae‐associated genes, as exclusively viable hyphae or yeast‐locked mutant cells expressing hyphae‐associated genes stimulated 5‐LOX by [Ca2+]i mobilization and p38 MAPK activation. LTB4 biosynthesis was orchestrated by synergistic activation of dectin‐1 and Toll‐like receptor 2, and corresponding signaling via SYK and MYD88, respectively. Conclusively, we report hyphae‐specific induction of LTB4 biosynthesis in human neutrophils. This highlights an expanding role of neutrophils during inflammatory processes in the response to C. albicans infections.
Essential Oils as Multicomponent Mixtures and Their Potential for Human Health and Well-Being
(2022)
Essential oils (EOs) and their individual volatile organic constituents have been an inherent part of our civilization for thousands of years. They are widely used as fragrances in perfumes and cosmetics and contribute to a healthy diet, but also act as active ingredients of pharmaceutical products. Their antibacterial, antiviral, and anti-inflammatory properties have qualified EOs early on for both, the causal and symptomatic therapy of a number of diseases, but also for prevention. Obtained from natural, mostly plant materials, EOs constitute a typical example of a multicomponent mixture (more than one constituent substances, MOCS) with up to several hundreds of individual compounds, which in a sophisticated composition make up the property of a particular complete EO. The integrative use of EOs as MOCS will play a major role in human and veterinary medicine now and in the future and is already widely used in some cases, e.g., in aromatherapy for the treatment of psychosomatic complaints, for inhalation in the treatment of respiratory diseases, or topically administered to manage adverse skin diseases. The diversity of molecules with different functionalities exhibits a broad range of multiple physical and chemical properties, which are the base of their multi-target activity as opposed to single isolated compounds. Whether and how such a broad-spectrum effect is reflected in natural mixtures and which kind of pharmacological potential they provide will be considered in the context of ONE Health in more detail in this review.
Natural products comprise a rich reservoir for innovative drug leads and are a constant
source of bioactive compounds. To find pharmacological targets for new or already known
natural products using modern computer-aided methods is a current endeavor in drug discovery.
Nature’s treasures, however, could be used more effectively. Yet, reliable pipelines for the
large-scale target prediction of natural products are still rare. We developed an in silico workflow
Int. J. Mol. Sci. 2020, 21, 7102; doi:10.3390/ijms21197102 www.mdpi.com/journal/ijms
Int. J. Mol. Sci. 2020, 21, 7102 2 of 18
consisting of four independent, stand-alone target prediction tools and evaluated its performance
on dihydrochalcones (DHCs)—a well-known class of natural products. Thereby, we revealed
four previously unreported protein targets for DHCs, namely 5-lipoxygenase, cyclooxygenase-1,
17β-hydroxysteroid dehydrogenase 3, and aldo-keto reductase 1C3. Moreover, we provide a
thorough strategy on how to perform computational target predictions and guidance on using the
respective tools.
Within the last decades cancer treatment improved by the availability of more specifically
acting drugs that address molecular target structures in cancer cells. However, those target-sensitive
drugs suffer from ongoing resistances resulting from mutations and moreover they are affected
by the cancer phenomenon of multidrug resistance. A multidrug resistant cancer can hardly be
treated with the common drugs, so that there have been long efforts to develop drugs to combat
that resistance. Transmembrane efflux pumps are the main cause of the multidrug resistance in
cancer. Early inhibitors disappointed in cancer treatment without a proof of expression of a respective
efflux pump. Recent studies in efflux pump expressing cancer show convincing effects of those
inhibitors. Based on the molecular symmetry of the efflux pump multidrug resistant protein (MRP) 4
we synthesized symmetric inhibitors with varied substitution patterns. They were evaluated in a
MRP4-overexpressing cancer cell line model to prove structure-dependent effects on the inhibition
of the efflux pump activity in an uptake assay of a fluorescent MRP4 substrate. The most active
compound was tested to resentisize the MRP4-overexpressing cell line towards a clinically relevant
anticancer drug as proof-of-principle to encourage for further preclinical studie
Unveiling the N-Terminal Homodimerization of BCL11B by Hybrid Solvent Replica-Exchange Simulations
(2021)
Transcription factors play a crucial role in regulating biological processes such as cell
growth, differentiation, organ development and cellular signaling. Within this group, proteins
equipped with zinc finger motifs (ZFs) represent the largest family of sequence-specific DNA-binding
transcription regulators. Numerous studies have proven the fundamental role of BCL11B for a
variety of tissues and organs such as central nervous system, T cells, skin, teeth, and mammary
glands. In a previous work we identified a novel atypical zinc finger domain (CCHC-ZF) which
serves as a dimerization interface of BCL11B. This domain and formation of the dimer were shown
to be critically important for efficient regulation of the BCL11B target genes and could therefore
represent a promising target for novel drug therapies. Here, we report the structural basis for
BCL11B–BCL11B interaction mediated by the N-terminal ZF domain. By combining structure
prediction algorithms, enhanced sampling molecular dynamics and fluorescence resonance energy
transfer (FRET) approaches, we identified amino acid residues indispensable for the formation of
the single ZF domain and directly involved in forming the dimer interface. These findings not only
provide deep insight into how BCL11B acquires its active structure but also represent an important
step towards rational design or selection of potential inhibitors.
Highly Virulent and Multidrug-Resistant Escherichia coli Sequence Type 58 from a Sausage in Germany
(2022)
Studies have previously described the occurrence of multidrug-resistant (MDR) Escherichia coli in human and veterinary medical settings, livestock, and, to a lesser extent, in the environment and food. While they mostly analyzed foodborne E. coli regarding phenotypic and sometimes genotypic antibiotic resistance and basic phylogenetic classification, we have limited understanding of the in vitro and in vivo virulence characteristics and global phylogenetic contexts of these bacteria. Here, we investigated in-depth an E. coli strain (PBIO3502) isolated from a pork sausage in Germany in 2021. Whole-genome sequence analysis revealed sequence type (ST)58, which has an internationally emerging high-risk clonal lineage. In addition to its MDR phenotype that mostly matched the genotype, PBIO3502 demonstrated pronounced virulence features, including in vitro biofilm formation, siderophore secretion, serum resilience, and in vivo mortality in Galleria mellonella larvae. Along with the genomic analysis indicating close phylogenetic relatedness of our strain with publicly available, clinically relevant representatives of the same ST, these results suggest the zoonotic and pathogenic character of PBIO3502 with the potential to cause infection in humans and animals. Additionally, our study highlights the necessity of the One Health approach while integrating human, animal, and environmental health, as well as the role of meat products and food chains in the putative transmission of MDR pathogens.